Side 4 av 5

InnleggSkrevet: 17/12-2010 23:19
Charlatan
skf95 skrev:Plutselig stoppet du å kommentere. Det må bety at jeg har rett!:)))


50 år stemmer ja! Husk at når du skriver p > 50 betyr dette strengt større enn 50. Men antar du mener [tex]p \geq 50[/tex], som betyr 50 eller større enn 50.

InnleggSkrevet: 17/12-2010 23:21
skf95
Ja det mener jeg, men har ikke lært det teiknet før i dag.

InnleggSkrevet: 18/12-2010 00:38
Gustav
@skf95: Det er vanlig praksis å la det opprinnelige innlegget stå mer eller mindre slik det ble skrevet. (Og det gjelder også innlegg generelt, sålenge trådens naturlige, logiske flyt avhenger av disse)

InnleggSkrevet: 18/12-2010 00:40
skf95
Jeg er ny her jeg, ble med i dag....

InnleggSkrevet: 18/12-2010 00:41
Gustav
skf95 skrev:Jeg er ny her jeg, ble med i dag....


Ja, den er grei. Velkommen til forumet:)

InnleggSkrevet: 18/12-2010 00:50
skf95
Det sto at på forumte får du raskt hjelp. Tok bare noen minutter før folk begynte å hjelpe. Denne siden kommer nok til stor nytte når jeg begynner på videregående!!

InnleggSkrevet: 18/12-2010 01:09
Fibonacci92
Etter å ha lest alle kommentarene fikk jeg lyst til å skrive en oppsummering i og med at jeg først antok at oppgaven var umulig å løse.

I denne oppgaven må vi anta at klokkeren vet sin egen alder, og at klokkeren vet presten sin alder. I tillegg må vi godta at alle kvinner fra 1 år og oppover regnes som damer. Dessuten må vi anta at klokkeren og presten har "perfekt logikk".

I og med at klokkeren vet sin egen alder, men likevel er usikker på svaret, må det bety at det finnes flere mulige alderskombinasjoner som gir produkt 2450 og sum lik det dobbelte av klokkerens alder.

Ved litt prøving og feiling finner vi ut at kombinasjonene 50, 7, 7 og 49, 10, 5 gir samme sum og produkt. Kvinnene er derfor en av disse aldrene.

Her er det viktig å notere seg at informasjonen om prestens alder er relevant. Klokkeren vet allerede prestens alder. Hvis presten er over 50 år gammel, hjelper ikke informasjonen klokkeren, og han kunne dermed ikke løst oppgaven. Hvis presten er under 50 er ikke presten eldst i noen av kombinasjonene (Vi regner ikke med forskjeller i måneder osv...). Siden presten ikke kan være under eller over 50 år gammel må den selvfølgelig være 50 år!

InnleggSkrevet: 18/12-2010 01:18
skf95
Bra sammendrag! Det hele kan vel oppsumeres med at oppgaven krever mye logikk, ikke nødvendigvis kunnskaper om likningee, som en skulle tro!

InnleggSkrevet: 18/12-2010 15:59
espen180
Gidder du å restaurere det opprinnelige innlegget? Slik det er nå hjelper det lite de som først nå får lest tråden.

InnleggSkrevet: 18/12-2010 17:01
Sievert
espen180 skrev:Gidder du å restaurere det opprinnelige innlegget? Slik det er nå hjelper det lite de som først nå får lest tråden.


Det var vel en innlevering med "premie til de som deltar" eller noe i den duren. Så tror neppe han vil skrive det på nytt. :roll:

InnleggSkrevet: 18/12-2010 18:52
Karl_Erik
Med forbehold om at jeg husker feil:

I en kirke sitter presten og klokkeren og snakker med tre kvinner. Etter en tid takker kvinnene for seg, og presten og klokkeren blir sittende. "Vet du hvor gamle de kvinnene var?" spør presten. "Nei, det gjør jeg ikke," sier klokkeren. "Jeg kan si deg så mye som at produktet av aldrene deres var 2450, og at summen av aldrene deres var det dobbelte av alderen din," sier presten.

Klokkeren grubler over dette til neste dag, og blir da spurt av presten om han har funnet ut av det ennå. Klokkeren må svare nei på dette. "Da kan jeg kanskje også fortelle deg at av oss fem var jeg den eldste," sier presten. "Å ja," sier klokkeren, "da er det jo lett!".

Hvor gammel er presten?

EDIT: Før sto det til slutt "Hvor gamle var de tre kvinnene?", men som espen180 påpekte var spørsmålet egentlig det det står nå - "Hvor gammel er presten?".

InnleggSkrevet: 18/12-2010 18:56
espen180
Var det ikke prestens alder det var snakk om?

InnleggSkrevet: 18/12-2010 19:04
Karl_Erik
Beklager, ja, du har rett. Endrer innlegget nå.

InnleggSkrevet: 18/12-2010 19:09
Charlatan
Helt enig med plutarco her, man skal aldri endre/fjerne sine innlegg slik at trådens innhold mister sin mening på noen måte.

InnleggSkrevet: 19/01-2011 15:51
skf95
skf95 skrev:Tror jeg er på sporet av noe nå:

Foreløpig har jeg bare funnet 3 mulige aldre til disse damene:

Alternativ 1
Dame 1: 10
Dame 2: 49
Dame 3: 5
Da blir klokkeren 32 år

Eller

Alternativ 2
Dame 1: 25
Dame 2: 49
Dame 3: 2
Da blir klokkeren 38 år

Eller

Alternativ 3
Dame 1: 7
Dame 2: 7
Dame 3: 10
Da blir klokkeren 12 år


Alle disse gir et produkt på 2450. Løsningen tror jeg ligger i replikken "Å, men da er det jo lett".

Tydeligvis vet klokkeren hvor gammel presten er, og kan ut i fra det vite hvor gamle damene er:

Alternativ 1 gir av prestens alder er større en 49
Samme med alternativ 2.
Alternativ 3 betyr at presten er eldre enn 12

Tydeligvis betyr det at det må være flere alders alternativ for damene, tror jeg.[/u]