Nøtt på vgs-nivå:
To sirkler, A og B, befinner seg i edklidsk todimensjonalt rom.
Sirkel A har en radius på 2 med sentrum i origo.
Sirkel B har en radius på [tex]sin(\frac{\pi}{3})[/tex], ligger i første kvadrant og tangerer x-aksen og y-aksen.
[tex]sin(\frac{\pi}{3}[/tex] er i radianer.
Oppgaven:
Finn de to skjæringspunktene til sirklene ved regning.
Sirklers skjæringspunkt
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Geogebra: http://www.geogebra.org/cms/
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Ja, det er det jeg mener. Så vidt jeg ser har du rett, Karl_Erik.
Du har skjønt det, Knuta.

Du har skjønt det, Knuta.

En ellipse er oppgitt:
[tex]x^2+4y^2=1[/tex]
Punktene A og B er ellipsens brennpunkter.
Punkt C ligger 1.5 fra A og 0.5 fra B.
Finn eksakte kordinater til Punkt C.

[tex]x^2+4y^2=1[/tex]
Punktene A og B er ellipsens brennpunkter.
Punkt C ligger 1.5 fra A og 0.5 fra B.
Finn eksakte kordinater til Punkt C.

Geogebra: http://www.geogebra.org/cms/
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Jeg skal prøve, men jeg har aldri gjort en slik oppgave før.
Koordinatene til ellipsens brennpunkter A og B er henholdsvis [tex](-sin(\frac{\pi}{3}),0)[/tex] og [tex](sin(\frac{\pi}{3}),0)[/tex] (Jeg brukte Geogebra til å finne disse punktene, men resten er gjort for hånd). Disse har en avstand på [tex]2sin(\frac{\pi}{3)[/tex]. Vi bruker cosinussetningen og finner vinkelen til linja [tex]BC[/tex] på [tex]AB[/tex].
[tex]cos\angle ABC=\frac{2sin^2(\frac{\pi}{3})-1}{sin(\frac{\pi}{3})}[/tex]
Vi finner en parameterfremstilling for vektoren [tex]\vec{BC}[/tex].
Jeg bruker trogonometri for å finne x-verdien og pythagoras for å finne y-verdien i vektoren.
[tex]\vec{BC}_x=-\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})} \\ \vec{BC}_y=\sqrt{0.25-\left(\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\right)^2}=\sqrt{\frac{\frac12sin(\frac{\pi}{3})-2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}}=\sqrt{\frac{sin(\frac{\pi}{3})-4sin^2(\frac{\pi}{3})-2}{4sin(\frac{\pi}{3})}}[/tex]
Da finner vi posisjonsvektoren [tex]\vec{OC}[/tex].
[tex]\vec{OC}=\vec{OB}+\vec{BC}=\left[sin(\frac{\pi}{3}),0\right]+\left[-\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\, , \, \sqrt{\frac{sin(\frac{\pi}{3})-4sin^2(\frac{\pi}{3})-2}{4sin(\frac{\pi}{3})}}\right] \\ \vec{OC}=\left[sin(\frac{\pi}{3})-\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\, , \, \sqrt{\frac{sin(\frac{\pi}{3})-4sin^2(\frac{\pi}{3})-2}{4sin(\frac{\pi}{3})}}\right][/tex]
Siden posisjonsvektoren har samme verdier som koordinatene til punktet, kan vi si at punktet C ligger i:
[tex]C=\left(sin(\frac{\pi}{3})-\frac{1}{4sin(\frac{\pi}{3})}\, , \, \sqrt{\frac{sin(\frac{\pi}{3})-1}{4sin(\frac{\pi}{3})}}\right)[/tex]
Sånn. Dette var anstrengende. Kjenner meg litt stolt over at jeg klarte å holde tunga rett i munnen gjennom det der. Nå jenstår det å se om jeg kom i nærheten av svaret.
EDIT:
Jeg tror det gikk skeis. Kan noen si meg hvor jeg sporet av?
EDIT2:
Jeg merket av jeg hadde gjort en feil da jeg lagde [tex]\vec{OB}[/tex]. Jeg fikset det og forkortet svaret. X-posisjonen ble riktig nå, men y-posisjonen er feil. Hva har jeg gjort galt?
Koordinatene til ellipsens brennpunkter A og B er henholdsvis [tex](-sin(\frac{\pi}{3}),0)[/tex] og [tex](sin(\frac{\pi}{3}),0)[/tex] (Jeg brukte Geogebra til å finne disse punktene, men resten er gjort for hånd). Disse har en avstand på [tex]2sin(\frac{\pi}{3)[/tex]. Vi bruker cosinussetningen og finner vinkelen til linja [tex]BC[/tex] på [tex]AB[/tex].
[tex]cos\angle ABC=\frac{2sin^2(\frac{\pi}{3})-1}{sin(\frac{\pi}{3})}[/tex]
Vi finner en parameterfremstilling for vektoren [tex]\vec{BC}[/tex].
Jeg bruker trogonometri for å finne x-verdien og pythagoras for å finne y-verdien i vektoren.
[tex]\vec{BC}_x=-\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})} \\ \vec{BC}_y=\sqrt{0.25-\left(\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\right)^2}=\sqrt{\frac{\frac12sin(\frac{\pi}{3})-2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}}=\sqrt{\frac{sin(\frac{\pi}{3})-4sin^2(\frac{\pi}{3})-2}{4sin(\frac{\pi}{3})}}[/tex]
Da finner vi posisjonsvektoren [tex]\vec{OC}[/tex].
[tex]\vec{OC}=\vec{OB}+\vec{BC}=\left[sin(\frac{\pi}{3}),0\right]+\left[-\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\, , \, \sqrt{\frac{sin(\frac{\pi}{3})-4sin^2(\frac{\pi}{3})-2}{4sin(\frac{\pi}{3})}}\right] \\ \vec{OC}=\left[sin(\frac{\pi}{3})-\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\, , \, \sqrt{\frac{sin(\frac{\pi}{3})-4sin^2(\frac{\pi}{3})-2}{4sin(\frac{\pi}{3})}}\right][/tex]
Siden posisjonsvektoren har samme verdier som koordinatene til punktet, kan vi si at punktet C ligger i:
[tex]C=\left(sin(\frac{\pi}{3})-\frac{1}{4sin(\frac{\pi}{3})}\, , \, \sqrt{\frac{sin(\frac{\pi}{3})-1}{4sin(\frac{\pi}{3})}}\right)[/tex]
Sånn. Dette var anstrengende. Kjenner meg litt stolt over at jeg klarte å holde tunga rett i munnen gjennom det der. Nå jenstår det å se om jeg kom i nærheten av svaret.
EDIT:
Jeg tror det gikk skeis. Kan noen si meg hvor jeg sporet av?

EDIT2:
Jeg merket av jeg hadde gjort en feil da jeg lagde [tex]\vec{OB}[/tex]. Jeg fikset det og forkortet svaret. X-posisjonen ble riktig nå, men y-posisjonen er feil. Hva har jeg gjort galt?
du sporet av i [tex]\vec{BC}_y[/tex] det ligger feil i utregningen.
Tips, bruk substitusjon. S i stedet for sin( [symbol:pi] / 3) Blir lettere å holde rede på. forøvrig er sin( [symbol:pi] / 3) = [symbol:rot] 3 / 2
Tips, bruk substitusjon. S i stedet for sin( [symbol:pi] / 3) Blir lettere å holde rede på. forøvrig er sin( [symbol:pi] / 3) = [symbol:rot] 3 / 2
Geogebra: http://www.geogebra.org/cms/
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Geogebra: http://www.geogebra.org/cms/
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Ser nå feilen, og retter opp.
Prøvde å forkorte, men det ble bare rot, så jeg setter
[tex]C=\left(sin(\frac{\pi}{3})-\frac{1}{4sin(\frac{\pi}{3})}\, , \, \sqrt{0.25-\left(\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\right)^2}\right)[/tex]
Det stemte ihvertfall da jeg sjekket.
Prøvde å forkorte, men det ble bare rot, så jeg setter
[tex]C=\left(sin(\frac{\pi}{3})-\frac{1}{4sin(\frac{\pi}{3})}\, , \, \sqrt{0.25-\left(\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\right)^2}\right)[/tex]
Det stemte ihvertfall da jeg sjekket.
Vi forestiller oss at vi legger ellipsen i et koordinatsystem og lar sentrum i ellipsen ligge i origo. Da ser vi relativt lett av likningen at ellipsens brennpunkter blir (+-(3^0.5)/2 , 0). Vi har også fått oppgitt avstanden fra brennpunktene til punktet C, og hvis punktet C har koordinatene (x,y) kan vi da sette opp likningene
sqrt(((sqrt 3)/2 - x)^2 +y^2) = 1.5
sqrt((-(sqrt 3)/2 - x)^2 +y^2) = 0.5
som har løsningene x=1/(sqrt(3)) og y = +-1/(sqrt(6)) . Siden vi ser på tegningen at punktet C ligger over x-aksen blir de eksakte koordinatene til punktet C
( 1/(sqrt 3) , 1/(sqrt 6) )
EDIT: Ble rimelig sent, ja.
sqrt(((sqrt 3)/2 - x)^2 +y^2) = 1.5
sqrt((-(sqrt 3)/2 - x)^2 +y^2) = 0.5
som har løsningene x=1/(sqrt(3)) og y = +-1/(sqrt(6)) . Siden vi ser på tegningen at punktet C ligger over x-aksen blir de eksakte koordinatene til punktet C
( 1/(sqrt 3) , 1/(sqrt 6) )
EDIT: Ble rimelig sent, ja.
Uff, jeg tok visst en tungvint vei ja.
benytt at[tex]\,\,\sin({\pi\over 3})={\sqrt3\over 2}[/tex]espen180 skrev:Ser nå feilen, og retter opp.
Prøvde å forkorte, men det ble bare rot, så jeg setter
[tex]C=\left(sin(\frac{\pi}{3})-\frac{1}{4sin(\frac{\pi}{3})}\, , \, \sqrt{0.25-\left(\frac{2sin^2(\frac{\pi}{3})-1}{2sin(\frac{\pi}{3})}\right)^2}\right)[/tex]
Det stemte ihvertfall da jeg sjekket.
da kan koordinaten til C skrives betraktelig enklere.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Figuren viser funksjonen [tex]f(x)=\frac{1}{\sin(x)} [/tex] i sort samt dens deriverte i rødt. Punkt A ligger i krysningspunktet der x>0 og x< [symbol:pi]
Finn kordinatene i A og oppgi dens eksakte verdier.

Finn kordinatene i A og oppgi dens eksakte verdier.

Geogebra: http://www.geogebra.org/cms/
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
Utfordringer: http://projecteuler.net/index.php?section=problems
[tex]M_{2147483647}[/tex] er ikke et primtall. 295257526626031 deler det.
[tex]f(x)\,=\,f^,(x)[/tex]
[tex]\frac{1}{\sin(x)}\,=\,-\frac{\cos(x)}{\sin^2(x)}[/tex]
[tex]\tan(x)=-1[/tex]
[tex]x=-\frac{\pi}{4}\,+\,\pi =\frac{3\pi}{4}[/tex]
[tex]y=\sqrt2[/tex]
[tex]A=(\frac{3\pi}{4},\,\sqrt2)[/tex]
[tex]\frac{1}{\sin(x)}\,=\,-\frac{\cos(x)}{\sin^2(x)}[/tex]
[tex]\tan(x)=-1[/tex]
[tex]x=-\frac{\pi}{4}\,+\,\pi =\frac{3\pi}{4}[/tex]
[tex]y=\sqrt2[/tex]
[tex]A=(\frac{3\pi}{4},\,\sqrt2)[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]