Anta at Gustav støtter LAMBRIDA si tolking ( øvre kvartsirkel tangerer omsirkel i punktet F ). Da står det att å vise at radien FS ligg på midtnormalen
til korden AC . Det greier eg ikkje ut frå dei opplysningane som er gitt i oppgåva ( ref. LAMBRIDA si løysing )
Omsirkel-nøtt
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Får samme svar som Lambrida. Det er lett å vise at lengdene AF=AG og per def er SF=SG, så linja gjennom H og S (S sentrum i den omskrevne sirkelen) er midtnormalen til segmentet FG. AFG er altså likebeint og det er lett å se at vinkel FAG er 90 siden AFC og AIG er kongruente trekanter. Vi får etter noen enkle pytagorasbetraktninger at omsirkelens radius er løsning av ligningen $(5+\sqrt{\frac{125}{2}}-x)^2+\frac{125}{2}=x^2$, så $x=\frac{10\sqrt{10}}{3}-\frac53\approx 8.8743$
Edit: rettelse takket være Mattebruker
- Vedlegg
-
- Skjermbilde 2022-04-26 kl. 14.12.17.png (98.93 kiB) Vist 45649 ganger
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Problemet blei langt meir interessant med ein informativ og klargjerande figur. Framifrå analyse !
Trur det har snike seg inn ein skrivefeil i likninga di.
Siktar til 2. leddet inne i parantesen: Du skriv [tex]\frac{125}{2}[/tex] . Rett uttrykk: [tex]\frac{\sqrt{250}}{2}[/tex] ?
Trur det har snike seg inn ein skrivefeil i likninga di.
Siktar til 2. leddet inne i parantesen: Du skriv [tex]\frac{125}{2}[/tex] . Rett uttrykk: [tex]\frac{\sqrt{250}}{2}[/tex] ?
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Betraktar den rettv. trekanten AFT. Da er
AT = AF sin45 ( trekant AFG er likeb. og rettv. ) = [tex]\sqrt{125}[/tex] [tex]\frac{\sqrt{2}}{2}[/tex] = [tex]\frac{\sqrt{250}}{2}[/tex]
ST = AT - AS = [tex]\frac{\sqrt{250}}{2}[/tex] - ( x - 5 ) = [tex]\frac{\sqrt{250}}{2}[/tex] + 5 - x
Får fasitsvaret når vi erstattar midtleddet inne i parantesen med [tex]\frac{\sqrt{250}}{2}[/tex].
AT = AF sin45 ( trekant AFG er likeb. og rettv. ) = [tex]\sqrt{125}[/tex] [tex]\frac{\sqrt{2}}{2}[/tex] = [tex]\frac{\sqrt{250}}{2}[/tex]
ST = AT - AS = [tex]\frac{\sqrt{250}}{2}[/tex] - ( x - 5 ) = [tex]\frac{\sqrt{250}}{2}[/tex] + 5 - x
Får fasitsvaret når vi erstattar midtleddet inne i parantesen med [tex]\frac{\sqrt{250}}{2}[/tex].
-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Kan godt vere at det er eitt eller anna eg har misforstått. Synest i alle fall at figuren du presenterer i innlegget ditt er interessant , informativ og klargjerande.
Meiner også at eg greier å følgje analysen din til punkt og prikke. Men vi er openbart ikkje einige når det gjeld midtleddet inne i parantesen.
Når eg byter ut [tex]\frac{125}{2}[/tex] ( " stridens kjerne " ) med [tex]\frac{\sqrt{250}}{2}[/tex] og løyser likninga i CAS, får eg same svaret som LAMBRIDA.
Likninga di gir derimot eit heilt anna svar.
Kanskje ligg mistydinga her: [tex]\sqrt{\frac{125}{2}}[/tex] = [tex]\frac{\sqrt{250}}{2}[/tex]
Meiner også at eg greier å følgje analysen din til punkt og prikke. Men vi er openbart ikkje einige når det gjeld midtleddet inne i parantesen.
Når eg byter ut [tex]\frac{125}{2}[/tex] ( " stridens kjerne " ) med [tex]\frac{\sqrt{250}}{2}[/tex] og løyser likninga i CAS, får eg same svaret som LAMBRIDA.
Likninga di gir derimot eit heilt anna svar.
Kanskje ligg mistydinga her: [tex]\sqrt{\frac{125}{2}}[/tex] = [tex]\frac{\sqrt{250}}{2}[/tex]
Ah, jeg ser nå at du ha helt rett! Har tydeligvis sett meg helt blind på det ene leddet og oversett at det manglet en kvadratrotMattebruker skrev: ↑28/04-2022 07:04 Kan godt vere at det er eitt eller anna eg har misforstått. Synest i alle fall at figuren du presenterer i innlegget ditt er interessant , informativ og klargjerande.
Meiner også at eg greier å følgje analysen din til punkt og prikke. Men vi er openbart ikkje einige når det gjeld midtleddet inne i parantesen.
Når eg byter ut [tex]\frac{125}{2}[/tex] ( " stridens kjerne " ) med [tex]\frac{\sqrt{250}}{2}[/tex] og løyser likninga i CAS, får eg same svaret som LAMBRIDA.
Likninga di gir derimot eit heilt anna svar.
Kanskje ligg mistydinga her: [tex]\sqrt{\frac{125}{2}}[/tex] = [tex]\frac{\sqrt{250}}{2}[/tex]


-
- Weierstrass
- Innlegg: 495
- Registrert: 26/02-2021 21:28
Takk for korrespondansen. Ei interessant og lærerik analyse.
Takk, i lige måde.