Gitt at $xy+yz+zx=1$, vis da at
$ \displaystyle \hspace{1cm}
\frac{x}{1+x^2} + \frac{y}{1+y^2} + \frac{z}{1+z^2}
=
\frac{ 2 }{ \sqrt{ (1+x^2)(1+y^2)(1+z^2) }\:}
$
Likhet
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
-
- Fibonacci
- Innlegg: 5648
- Registrert: 24/05-2009 14:16
- Sted: NTNU
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
Godt mulig det finnes finere måter å gjøre dette på!
Vi har $ 1 = 1^2 = (xy + xz + yz)^2 = x^2 y^2 + x^2 z^2 + y^2 z^2 + 2(x^2 yz + x y^2 z + xy z^2 ) $
slik at $ 2(x^2 yz + x y^2 z + xy z^2 ) = 1 - x^2 y^2 - x^2 z^2 - y^2 z^2 $.
Vi har også $$ \frac{x}{1 + x^2} + \frac{y}{1 + y^2} + \frac{z}{1 + z^2} = \frac{x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2)}{(1+x^2)(1+y^2)(1+z^2)} $$
Nå kan vi skrive $$ x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2) = \sqrt{(x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2))^2} $$
$$ = \sqrt{x^2 (1+y^2)^2 (1 + z^2)^2 + y^2 (1 + x^2)^2 (1 + z^2)^2 + z^2 (1+x^2)^2 (1 + y^2)^2 + 2 xy (1+x^2)(1+y^2)(1+z^2)^2 + 2 xz (1 + x^2)(1+y^2)^2(1+z^2) + 2yz(1+x^2)^2(1+y^2)(1+z^2)} $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( \frac{x^2(1+y^2)(1+z^2)}{1+x^2} + \frac{y^2(1+x^2)(1+z^2)}{1+y^2} + \frac{z^2(1+x^2)(1+y^2)}{1+z^2} + 2(xy + xz + yz) + 2(x^2yz + xy^2 z + xyz^2) \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( \frac{1 + x^2 - 1 + x^2 y^2 + x^2 z^2 + x^2 y^2 z^2}{1+x^2} + \frac{1 + y^2 - 1 + x^2 y^2 + y^2 z^2 + x^2 y^2 z^2}{1+y^2} + \frac{1 + z^2 - 1 + x^2 z^2 + y^2 z^2 + x^2 y^2 z^2}{1+z^2} + 2 + 1 - x^2 y^2 - x^2 z^2 - y^2 z^2 \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( 1 + \frac{ - 1 + x^2 y^2 + x^2 z^2 + x^2 y^2 z^2}{1+x^2} + 1 + \frac{ - 1 + x^2 y^2 + y^2 z^2 + x^2 y^2 z^2}{1+y^2} + 1 + \frac{ - 1 + x^2 z^2 + y^2 z^2 + x^2 y^2 z^2}{1+z^2} + 3 - \frac{x^2 y^2 - x^2 y^2 z^2}{1 + z^2} - \frac{x^2 z^2 - x^2 y^2 z^2}{1 + y^2} - \frac{y^2 z^2 + x^2 y^2 z^2}{1 + x^2} \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg(6 + \frac{-( y^2 z^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (y^2 z^2 + x^2 y^2 z^2)}{1 + x^2} + \frac{-(x^2 z^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (x^2 z^2 - x^2 y^2 z^2)}{1 + y^2} + \frac{-(x^2 y^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (x^2 y^2 - x^2 y^2 z^2)}{1 + z^2} \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg(6 - 2yz \frac{xy + xz + yz + x^2}{1 + x^2} - 2xz \frac{xy + xz + yz + y^2}{1+ y^2} - 2xy \frac{xy + xz + yz + x^2}{1+z^2} \bigg) } $$
$$ = \sqrt{4(1+x^2)(1+y^2)(1+z^2)} = 2\sqrt{(1+x^2)(1+y^2)(1+z^2)} $$
Da har vi $$ \frac{x}{1 + x^2} + \frac{y}{1 + y^2} + \frac{z}{1 + z^2} = \frac{2\sqrt{(1+x^2)(1+y^2)(1+z^2)}}{(1+x^2)(1+y^2)(1+z^2)} = \frac{2}{\sqrt{(1+x^2)(1+y^2)(1+z^2)}} $$

Vi har $ 1 = 1^2 = (xy + xz + yz)^2 = x^2 y^2 + x^2 z^2 + y^2 z^2 + 2(x^2 yz + x y^2 z + xy z^2 ) $
slik at $ 2(x^2 yz + x y^2 z + xy z^2 ) = 1 - x^2 y^2 - x^2 z^2 - y^2 z^2 $.
Vi har også $$ \frac{x}{1 + x^2} + \frac{y}{1 + y^2} + \frac{z}{1 + z^2} = \frac{x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2)}{(1+x^2)(1+y^2)(1+z^2)} $$
Nå kan vi skrive $$ x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2) = \sqrt{(x(1+y^2)(1 + z^2) + y(1+x^2)(1+z^2) + z(1+x^2)(1+y^2))^2} $$
$$ = \sqrt{x^2 (1+y^2)^2 (1 + z^2)^2 + y^2 (1 + x^2)^2 (1 + z^2)^2 + z^2 (1+x^2)^2 (1 + y^2)^2 + 2 xy (1+x^2)(1+y^2)(1+z^2)^2 + 2 xz (1 + x^2)(1+y^2)^2(1+z^2) + 2yz(1+x^2)^2(1+y^2)(1+z^2)} $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( \frac{x^2(1+y^2)(1+z^2)}{1+x^2} + \frac{y^2(1+x^2)(1+z^2)}{1+y^2} + \frac{z^2(1+x^2)(1+y^2)}{1+z^2} + 2(xy + xz + yz) + 2(x^2yz + xy^2 z + xyz^2) \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( \frac{1 + x^2 - 1 + x^2 y^2 + x^2 z^2 + x^2 y^2 z^2}{1+x^2} + \frac{1 + y^2 - 1 + x^2 y^2 + y^2 z^2 + x^2 y^2 z^2}{1+y^2} + \frac{1 + z^2 - 1 + x^2 z^2 + y^2 z^2 + x^2 y^2 z^2}{1+z^2} + 2 + 1 - x^2 y^2 - x^2 z^2 - y^2 z^2 \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg( 1 + \frac{ - 1 + x^2 y^2 + x^2 z^2 + x^2 y^2 z^2}{1+x^2} + 1 + \frac{ - 1 + x^2 y^2 + y^2 z^2 + x^2 y^2 z^2}{1+y^2} + 1 + \frac{ - 1 + x^2 z^2 + y^2 z^2 + x^2 y^2 z^2}{1+z^2} + 3 - \frac{x^2 y^2 - x^2 y^2 z^2}{1 + z^2} - \frac{x^2 z^2 - x^2 y^2 z^2}{1 + y^2} - \frac{y^2 z^2 + x^2 y^2 z^2}{1 + x^2} \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg(6 + \frac{-( y^2 z^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (y^2 z^2 + x^2 y^2 z^2)}{1 + x^2} + \frac{-(x^2 z^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (x^2 z^2 - x^2 y^2 z^2)}{1 + y^2} + \frac{-(x^2 y^2 + 2(x^2 yz + xy^2 z + xy z^2)) + x^2 y^2 z^2 - (x^2 y^2 - x^2 y^2 z^2)}{1 + z^2} \bigg) } $$
$$ = \sqrt{(1+x^2)(1+y^2)(1+z^2) \bigg(6 - 2yz \frac{xy + xz + yz + x^2}{1 + x^2} - 2xz \frac{xy + xz + yz + y^2}{1+ y^2} - 2xy \frac{xy + xz + yz + x^2}{1+z^2} \bigg) } $$
$$ = \sqrt{4(1+x^2)(1+y^2)(1+z^2)} = 2\sqrt{(1+x^2)(1+y^2)(1+z^2)} $$
Da har vi $$ \frac{x}{1 + x^2} + \frac{y}{1 + y^2} + \frac{z}{1 + z^2} = \frac{2\sqrt{(1+x^2)(1+y^2)(1+z^2)}}{(1+x^2)(1+y^2)(1+z^2)} = \frac{2}{\sqrt{(1+x^2)(1+y^2)(1+z^2)}} $$
Sist redigert av jhoe06 den 21/07-2013 22:05, redigert 1 gang totalt.
-
- Fibonacci
- Innlegg: 5648
- Registrert: 24/05-2009 14:16
- Sted: NTNU
Alternativt la $x = \tan A$, $y = \tan B$ og $z = \tan C$ 

"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk, Fysikk og Informatikk