Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.
	Moderators:  Vektormannen , espen180 , Aleks855 , Solar Plexsus , Gustav , Nebuchadnezzar , Janhaa 
			
		
		
			
				
																			
								viol  											 
									
						
		
						
						
		 
		
						
																			
							
						
																	  24/05-2020 20:41  
			
			
			
			
			Et vektorfelt er gitt: f=(5x^3/3, 5y^3/3, 5z^3/3) 
Flaten s er også gitt: s: x^2 + y^2 + z^2 = 1. 
 
oppgaven ber om regne ut flateintegralet av f * n, der f er det oppgitte vektorfeltet, mens n er normalvektor. 
 
Svar: 4π 
 
Kan noen forklare meg hvordan man kommer fram til svaret?
            
			
									
									
						 
		 
				
		
		 
	 
	
			
	
			
		
		
			
				
																			
								Kay 											 
						Abel 			
		Posts:  685  		Joined:  13/06-2016 19:23 		
		
											Location:  Gløshaugen 
							
						
		 
		
						
																			
							
						
																	  25/05-2020 19:32  
			
			
			
			
			Utnytt at
[tex]\iint_S \textbf{F}\cdot \hat{\textbf{N}}dS=\iiint_R \nabla \cdot \textbf{F}dV[/tex].
[+] Skjult tekst Med forbehold om feil: 
 
Vi har at 
 
[tex]\nabla\cdot \textbf{F}=\frac{\partial}{\partial x}\frac{5x^3}{3}+\frac{\partial}{\partial y}\frac{5y^3}{3}+\frac{\partial}{\partial z}\frac{5z^3}{3}=5(x^2+y^2+z^2)[/tex] 
 
Så 
 
[tex]\iint_S \textbf{F}\cdot \hat{\textbf{N}}dS=\iiint_R5(x^2+y^2+z^2)dV[/tex] 
 
Innfører deretter kulekoordinater [tex](x,y,z)=(\rho\cos\theta\sin(\phi),\rho\sin\theta\sin\phi,\rho\cos\theta)[/tex] 
 
Så vi har at 
 
[tex]\iiint_R \nabla\cdot \textbf{F}dV=\int_0^{2\pi}\int_0^{\pi}\int_0^15\rho^2\rho^2\sin\phi d\rho d\phi d\theta=4\pi[/tex]