Parallel og vinkelrett vektor

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Parallel og vinkelrett vektor

Innlegg sinus00 » 25/03-2020 09:50

Hei,
sitter litt fast på en relativ grei oppgave.

vektor a=[1,2,3] vektor b=[1,-2,2]

Dekomponer vektor a i en vektor parallell med vektor b og en vektor vinkelrett på vektor b.

Til nå har jeg prøvd å ha en felles faktor utenfor, for å finne hva denne skal være for å få vektoren parallel. Har også forsøkt med skalarprodukt for å finne a vinkelrett på b :)
sinus00 offline

Re: Parallel og vinkelrett vektor

Innlegg Kristian Saug » 25/03-2020 10:54

Hei,

Du er inne på noe riktig!

Hint:

Sett
[tex]\overrightarrow{u}=t\overrightarrow{b}[/tex]
[tex]\overrightarrow{v}=\begin{bmatrix} x,y,z \end{bmatrix}[/tex]

Videre er
[tex]\overrightarrow{v}\cdot \overrightarrow{b}=0[/tex]
og
[tex]\overrightarrow{u}+\overrightarrow{v}=\overrightarrow{a}[/tex]


Svar:
[tex]\overrightarrow{u}=\begin{bmatrix}\frac{1}{3},-\frac{2}{3},\frac{2}{3} \end{bmatrix}[/tex]
[tex]\overrightarrow{v}=\begin{bmatrix} \frac{2}{3},\frac{8}{3},\frac{7}{3} \end{bmatrix}[/tex]
Sist endret av Kristian Saug den 26/03-2020 11:09, endret 2 ganger.
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 460
Registrert: 11/11-2019 18:23

Re: Parallel og vinkelrett vektor

Innlegg sinus00 » 26/03-2020 08:55

Takk for svar! Skjønner dessverre ikke helt hva du mener.

-Hvorfor har du [tex]\vec{u}+\vec{v} =\vec{a}[/tex] ?


-Er jeg inne på noe med likningsløsning ved t = 3z-3y ?
sinus00 offline

Re: Parallel og vinkelrett vektor

Innlegg Kristian Saug » 26/03-2020 09:32

Hei igjen,

Siden [tex]\overrightarrow{a}[/tex] skal dekomponeres i to vektorer som jeg har kalt [tex]\overrightarrow{u}[/tex] og [tex]\overrightarrow{v}[/tex], må nesten [tex]\overrightarrow{u}[/tex] + [tex]\overrightarrow{v}[/tex] = [tex]\overrightarrow{a}[/tex] !

Legger ut komplett løsningsforslag om en time.
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 460
Registrert: 11/11-2019 18:23

Re: Parallel og vinkelrett vektor

Innlegg Kristian Saug » 26/03-2020 10:47

Løsningsforslag:

[tex]\overrightarrow{a}=\begin{bmatrix} 1,2,3 \end{bmatrix}[/tex]
[tex]\overrightarrow{b}=\begin{bmatrix} 1,-2,2 \end{bmatrix}[/tex]

[tex]\overrightarrow{u}=t\cdot \overrightarrow{b}=\begin{bmatrix} t,-2t,2t \end{bmatrix}[/tex]
[tex]\overrightarrow{v}=\begin{bmatrix} x,y,z \end{bmatrix}[/tex]

[tex]\overrightarrow{v}\cdot \overrightarrow{b}=0[/tex] gir
[tex]x-2y+2z=0[/tex]

og

[tex]\overrightarrow{u}+\overrightarrow{v}=\overrightarrow{a}[/tex] gir
[tex]t+x=1[/tex]
[tex]-2t+y=2[/tex]
[tex]2t+z=3[/tex]

Utfra dette setter vi
[tex]x=1-t[/tex]
[tex]y=2+2t[/tex]
[tex]z=3-2t[/tex]

inn i
[tex]x-2y+2z=0[/tex]

og får
[tex]t=\frac{1}{3}[/tex]

Resten skulle da være greit!

Svar:

[tex]\overrightarrow{u}=\begin{bmatrix}\frac{1}{3},-\frac{2}{3},\frac{2}{3} \end{bmatrix}[/tex]

[tex]\overrightarrow{v}=\begin{bmatrix} \frac{2}{3},\frac{8}{3},\frac{7}{3} \end{bmatrix}[/tex]


Se også vedlegg for visualisering samt løsning i CAS.
Vedlegg
vektorer i 3D.odt
(84.54 KiB) 17 ganger
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 460
Registrert: 11/11-2019 18:23

Re: Parallel og vinkelrett vektor

Innlegg sinus00 » 26/03-2020 20:48

Fantastisk! Tusen takk for hjelpen :D :D :D
sinus00 offline

Hvem er i forumet

Brukere som leser i dette forumet: MSN [Bot] og 151 gjester