monotoniegenskaper

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

monotoniegenskaper

Innlegg kriz1 » 10/10-2019 19:51

Hei trenger hjelp med denne:

f(x) = x^2 - 4tan^(-1)(x)

Trenger å finne monotoniegenskapene:
Da deriverer jeg: 2x - 4/(1+x^2) = 0
Greier ikke å faktorisere videre

2x er null når x = 0
4/(1+x^2) er alltid positiv
Da får jeg bare et nullpunkt?
kriz1 offline

Re: monotoniegenskaper

Innlegg Aleks855 » 10/10-2019 20:02

Det stemmer at det bare er ett nullpunkt, men siden du ser på nullpunktene til hvert ledd, så blir det dessverre feil.

Hvis du heller utvider uttrykket slik at det blir én stor brøk, så kan du støtte deg på at en brøk=0 når teller=0.

Eksempel:

Bilde

Riktignok litt ekkelt med tredjegradslikninger, men det var av den sorten som lar seg løse på "øyemål" på en eller flere måter.

I dette tilfellet skal det la seg se at når vi ser etter et tall $x$ slik at $x^3+x = 2$, så skal $x=1$ hoppe ut som et umiddelbart alternativ, litt fordi $x^3 = x$ i det tilfellet (men også for $x=0$ for øvrig, men denne passa ikke inn).

Alternativt, hvis du har gjort veldig mye oppgaver som innebærer faktorisering før, så kan det også observeres at $x^3 +x-2 = (x-1)(x^2+x+2)$, med litt sjonglering. Men jeg ville ikke "forventet" at man kan dette, avhengig av hvilket nivå man er på.

Det kan nevnes at hvis vi ser på $(x-1)(x^2+x+2)$, så hopper $x=1$ ut som en løsning med en gang, pga. den første faktoren. Men vi får også innblikk i at det fins to andre løsninger. Nemlig løsningene på $x^2+x+2=0$. Men denne har ingen REELLE løsninger hvertfall.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5901
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: monotoniegenskaper

Innlegg Kristian Saug » 10/10-2019 20:51

Ja,

Og da ser vi at (1, -phi + 1) er et bunnpkt, siden det deriverte uttrykket er negativt for x < 1 og positivt for x > 1.

Videre har vi at f''(x) = 2(x + 1)(x^3 - x^2 +3x + 1)/(x^2 + 1)^2
(etter litt sjongleringer)

f''(x) = 0 gir to resultater
Det ene ser vi lett ut fra 2. faktor:
x = -1
Det andre, ut fra 3. faktor, må vi bruke digitalt verktøy på og får:
x = -0.296

Altså har vi to vendepunkt:
(-1, phi + 1)
og
(-0.296, 1.237)
Kristian Saug offline

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot] og 37 gjester