Side 1 av 1
vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 20:41
av hifiman
sitter å plages litt med en små ekkel derivasjonsoppgave her
er det kun en derivasjons regel som man bruker her ?
Deriver følgende funksjoner
\[\frac{1}{6}{x^3} - \frac{1}{4}{x^2} + 4x + 6\]
er dette en begynnelse ?
\[f` = {x^3} - {x^2} + 4\]
Re: vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 21:19
av Vaktmester
Du er på god vei.
$(\frac{1}{6}{x^3})' = \frac{1}{6}\cdot 3 {x^2} = \frac{1}{2} {x^2}$
ser du da hva du har gjort galt i de andre leddene?
Re: vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 21:21
av hifiman
Vaktmester skrev:Du er på god vei.
$(\frac{1}{6}{x^3})' = \frac{1}{6}\cdot 3 {x^2} = \frac{1}{2} {x^2}$
ser du da hva du har gjort galt i de andre leddene?
jeg har glem å dele med 1 ?
så diverer hver brøk så, slår du dem sammen ?
Re: vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 21:26
av Vaktmester
Dele på en vil vel ikke forandre noe. Det er helt korrekt at man deriverer hvert ledd for seg.
Regelen som du skal bruke på alle leddene er:
$f '(x) = nx ^{n-1} $
Et eksempel:
$(4x^3)' = 4 \cdot 3x^2 = 12x^2$
Våre gode venner på Udl.no har noen gode videoer på derivasjon som du kanskje bør se igjenom.
http://udl.no/matematikk/derivasjon
Re: vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 21:29
av hifiman
Vaktmester skrev:Dele på en vil vel ikke forandre noe. Det er helt korrekt at man deriverer hvert ledd for seg.
Regelen som du skal bruke på alle leddene er:
$f '(x) = nx ^{n-1} $
Et eksempel:
$(4x^3)' = 4 \cdot 3x^2 = 12x^2$
Våre gode venner på Udl.no har noen gode videoer på derivasjon som du kanskje bør se igjenom.
http://udl.no/matematikk/derivasjon
ok
\[{( - \frac{1}{4}x)^2} = \frac{1}{4}{2^x} = \frac{1}{2}x\]
riktig ut ?
Re: vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 21:32
av Vaktmester
$- \frac{1}{4}{x^2} = - \frac{1}{4} \cdot 2 {x^1} = - \frac{1}{4} \cdot 2 \cdot x = - \frac{2}{4} \cdot x = - \frac{1}{2} x $
Da har du fått to av leddene. De siste to gjorde du riktig da du stilte spm.
Re: vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 21:39
av hifiman
Vaktmester skrev:$- \frac{1}{4}{x^2} = - \frac{1}{4} \cdot 2 {x^1} = - \frac{1}{4} \cdot 2 \cdot x = - \frac{2}{4} \cdot x = - \frac{1}{2} x $
Da har du fått to av leddene. De siste to gjorde du riktig da du stilte spm.
takk
\[ = - \frac{1}{2}x + \frac{1}{{4x}} = 2x\]
blir den første brøken slik ? eller skal 1 tallet ha x også ?
\[ - \frac{1}{{2x}}\]
Re: vanskelig derivasjons oppgave
Lagt inn: 01/10-2014 22:37
av Vaktmester
Sliter dessverre med å skjønne deg.
Vi skal derivere $\frac{1}{6}{x^3} - \frac{1}{4}{x^2} + 4x + 6$
Jeg har allerede vist at:
$(\frac{1}{6}{x^3})' = \frac{1}{6}\cdot 3 {x^2} = \frac{1}{2} {x^2}$
$(- \frac{1}{4}{x^2})' = - \frac{1}{4} \cdot 2 {x^1} = - \frac{1}{4} \cdot 2 \cdot x = - \frac{2}{4} \cdot x = - \frac{1}{2} x$
Da må du finne:
$(4x)' =$
og
$(6)' = $
Da har du alle leddene du trenger. Prøv!
Re: vanskelig derivasjons oppgave
Lagt inn: 02/10-2014 08:35
av hifiman
Vaktmester skrev:Sliter dessverre med å skjønne deg.
Vi skal derivere $\frac{1}{6}{x^3} - \frac{1}{4}{x^2} + 4x + 6$
Jeg har allerede vist at:
$(\frac{1}{6}{x^3})' = \frac{1}{6}\cdot 3 {x^2} = \frac{1}{2} {x^2}$
$(- \frac{1}{4}{x^2})' = - \frac{1}{4} \cdot 2 {x^1} = - \frac{1}{4} \cdot 2 \cdot x = - \frac{2}{4} \cdot x = - \frac{1}{2} x$
Da må du finne:
$(4x)' =$
og
$(6)' = $
Da har du alle leddene du trenger. Prøv!
har like problemer med å skjønne det..

men skal se på det du har skrevet , takk for hjelpen
