Side 1 av 1

trenger hjelp med integrasjon

Lagt inn: 05/04-2005 17:22
av Jeg plages
Kan noen hjelpe meg med følgende oppgaver: (helst med utregning for da kan jeg jo skjønne dem etterhvert)

a) Funksjonene f(x)=x og g(x)= x[sup]2[/sup]-2 avgrenser et areal. Finn dette arealet.


b) Funksjonen f(x) = lnx, x-aksen og linja x =e avgrenser et areal. Finn dette arealet.


c) finn de bestemte integralene: (for maxverdi pi og til o)
[itgl][/itgl](2x+1) cos (x[sup]2[/sup]+x) dx=

d) finn de bestemte integralene (maxverdi ln2 og minverdi 0)
[itgl][/itgl] X x e[sup]x[/sup] x dx=

Lagt inn: 05/04-2005 17:44
av euklid
Hei 'jeg plages'.

For alle oppgaver der det spørres etter avgrenset areal er det lurt å tegne opp funksjonene på kalkulatoren. Dermed tar du A=[itgl][/itgl]z(x)-[itgl][/itgl]v(x) hvor z(x) er den funksjonen som har den høyeste y-verdi.

a) A=[itgl][/itgl]f(x)-[itgl][/itgl]g(x). Intervallet integralene går på kan du finne ved å finne skjæringspunktene.
Sett f(x)=g(x).

b) I dette tilfellet gjør du det samme som a).

c) Her løser du integralet ved hjelp av substitusjon.
Setter u=x^2+x hvor u' (derivert)= 2x+1.
Setter dx=du/u'.

Da får du integralet:
[itgl][/itgl](2x+1) cos (x^2+x) dx=
[itgl][/itgl](2x+1)*cos(u)*du/u'=
[itgl][/itgl]cos(u) du= -sinu = [-sin(x^2+x)] (får bort det første leddet.)

Dermed regner du ut for intervallet 0-->[pi][/pi] som et vanlig bestemt integral.

PS: jeg antar at siden du la innlegget på høyskole/universitet bør du kunne foreta endel utregning selv. Derfor har jeg gitt deg hint.

Lagt inn: 05/04-2005 18:05
av Kent
Husk at arealet ikke er det samme som integralet. Hvis du skal finne arealet under en funksjon som tar negative verdier på intervallet I og positive verdier på intervallet J, må du summere absoluttverdien til integralet av funksjonen på I med integralet av funksjonen på J

Hva gikk oppgave d) ut på?

Lagt inn: 05/04-2005 18:06
av euklid
Oppgave d) er en vel en enkel delvis integrasjonsoppgave.
Delvis integrasjon kan man bare bruke en formelhefte for å løse.

Lagt inn: 05/04-2005 18:20
av Kent
a)
1) Finn skjæringen mellom funksjonene. Dette gjøres ved å sette funksjonene lik hverandre. Løsningene (a og b) er de x-verdiene du skal finne arealet mellom.
2) Finn punktene hvor grafene skjærer x-aksen. (Dette skjer i punkt c for den ene grafen og punkt d for den andre grafen. Integralet fra a til c for den ene funksjonen og a til d for den andre er negative. Bruk absoluttverdien (henholdsvis E og F) for disse integralene som areal for det intervallet. Integralet fra c til b og d til b er positive og kan tolkes som areal (henholdsvis G og H). Regn ut E+G og F+H. Trekk den minste verdien fra den største og du har arealet.

b)
Finn funksjonens skjæring med x-aksen. ln(x)=0 gir x=1.
Du skal altså integrere funksjonen fra 1 til e.

c)
Ble bra forklart av euklid.

d)
Forstod som sagt ikke oppgaven.

Lagt inn: 05/04-2005 18:22
av Kent
euklid skrev:Oppgave d) er en vel en enkel delvis integrasjonsoppgave.
Delvis integrasjon kan man bare bruke en formelhefte for å løse.
Har ikke lov å bruke formelhefte lenger... :cry:
Forstår heller ikke notasjonen i oppgaven, kan du omformulere?

Lagt inn: 05/04-2005 18:31
av euklid
Sjekk en vilkårlig Kalkulus bok.

Lagt inn: 05/04-2005 18:50
av Kent
Dette er oppgaven:
∫ X x e[sup]x[/sup] x dx
x er variabelen. Anses X som konstant?
Skal x multipliserer med x slik at oppgaven blir
X∫ x[sup]2[/sup] e[sup]x[/sup] dx?

Er ikke særlig mye poeng å slå opp i noen av kalkulusbøkene mine når jeg ikke forstår hva som er ment med notasjonen.

Re: trenger hjelp med integrasjon

Lagt inn: 05/04-2005 18:55
av Jeg plages
Jeg plages skrev: d) finn de bestemte integralene (maxverdi ln2 og minverdi 0)
[itgl][/itgl] X x e[sup]x[/sup] x dx=
De små x'ene er gangetegn!

Lagt inn: 05/04-2005 19:06
av Kent
Aah, da forstår jeg. :idea:
Jeg ville skrevet det slik:
[itgl][/itgl]xe[sup]x[/sup]dx
Enkel delvis integrasjon.
[itgl][/itgl]xe[sup]x[/sup]dx=xe[sup]x[/sup]-e[sup]x[/sup] , fra 0 til ln(2)
ln(2)e[sup]ln(2)[/sup]-e[sup]ln(2)[/sup]+1=2ln(2)-2+1=2ln(2)-1
Stemmer?

Lagt inn: 05/04-2005 19:10
av Gjest
euklid skrev: PS: jeg antar at siden du la innlegget på høyskole/universitet bør du kunne foreta endel utregning selv. Derfor har jeg gitt deg hint.
Er forkursmatte så den kunne vel egentlig vært under vgs også.

Skal se om jeg klarer meg med de hintene du har gitt........

Lagt inn: 05/04-2005 22:30
av euklid
Ja, det kunne den. Allikevel våger jeg å påstå at slike oppgaver ikke fremkommer i 3MX eksamener da oppgavene er elementære innenfor temaet.
Skal du studere matematikk siden du tar forkurset?

Re: trenger hjelp med integrasjon

Lagt inn: 05/04-2005 23:40
av Kent
Jeg plages skrev:[itgl][/itgl] X x e[sup]x[/sup] x dx=
Kom på en ting som kan være viktig å poengtere. Ved integrasjon angir bokstaven etter d-en hva som er variabelen det integreres med tanke på. Integrerer du med tanke på u skal det stå du, integrerer du med tanke på x skal det stå dx, integrerer du med tanke på X skal det stå dX.
Slik det var skrevet hadde du valgt x som integrasjonsvariabel, ikke X.