Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.
Bruk forholdstesten til å avgjøre om rekken konvergerer eller divergerer..
a)
[symbol:uendelig]
[symbol:sum] n/3[sup]n[/sup]
n=1 Jeg ser at den konvergerer mot null men kan noen vise meg hvordan jeg bruker forholdstesten
b)
[symbol:uendelig]
[symbol:sum]3[sup]n[/sup]/n[sup]10[/sup]
n=1 Denne divergerer hvis jeg ikke tar helt feil men trenger hjelp til forholdstesten her og
Så ser vi at når n--> [symbol:uendelig] , så vil brøken [tex][(n+1)/n][/tex]
alltid være litt større enn 1, men brøken skal så multipliseres med (1/3),
slik at:
[tex]a(n+1)/a(n)[/tex] < 1 og dermed vil rekka konvergere.
b)
For [tex]a(n+1)/a(n)[/tex] vil gi : 3*[(n^10)/(n+1)^10]
og brøken (n^10)/((n+1)^10) vil alltid være litt under 1.
Men siden dette skal multipliseres med 3 vil
[tex]a(n+1)/a(n)[/tex] > 1 og rekka vil divergere