Hei. Har et uttrykk her og prøver å gjøre dette så fint som mulig.
[tex]y' = \frac{y}{x} \cdot \frac{25 \pi \left( y^2 + 100x^2\right) + 10y^3}{50 \pi \left( y^2 + 100x^2\right) + 10y^3}[/tex]
Ser at det også kan skrives som:
[tex]y' = \frac{y}{x} \cdot \left( 1 - \frac{25 \pi \left( y^2 + 100x^2\right)}{50 \pi \left( y^2 + 100x^2\right) + 10y^3} \right)[/tex]
men jeg vet ikke om det er så mye finere... Det ser jo så forkortbart ut... Noen som kan hjelpe?
Faktorisering
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
aiiaiiaiiii, øynene mine brenner xD du har gjort noe kjempeulovlig:
[tex]y' = \frac{y}{x} \cdot \frac{25 \pi \left( y^2 + 100x^2\right) + 10y^3}{50 \pi \left( y^2 + 100x^2\right) + 10y^3}[/tex] IKKE LIK [tex]\frac{y}{2x} + \frac{10y^4}{10xy^3}[/tex]
Husk at du ikke kan splitte nevneren(!). I stedet får du:
[tex]y' = \frac {25 \pi y^3}{f} + \frac {2500 \pi x^2y}{f} + \frac {10y^4}{f}[/tex], der [tex]f[/tex] er fellesnevneren [tex]50 \pi y^2x + 5000 \pi x^3 + 10xy^3[/tex]
Så kan du trygt gå videre og prøve å forenkle resten, hvis det lar seg gjøre.
[tex]y' = \frac{y}{x} \cdot \frac{25 \pi \left( y^2 + 100x^2\right) + 10y^3}{50 \pi \left( y^2 + 100x^2\right) + 10y^3}[/tex] IKKE LIK [tex]\frac{y}{2x} + \frac{10y^4}{10xy^3}[/tex]
Husk at du ikke kan splitte nevneren(!). I stedet får du:
[tex]y' = \frac {25 \pi y^3}{f} + \frac {2500 \pi x^2y}{f} + \frac {10y^4}{f}[/tex], der [tex]f[/tex] er fellesnevneren [tex]50 \pi y^2x + 5000 \pi x^3 + 10xy^3[/tex]
Så kan du trygt gå videre og prøve å forenkle resten, hvis det lar seg gjøre.
Fysikk og matematikk (MTFYMA, Sivilingeniør/Master 5-årig) ved NTNU
Nei, glem det. Det blir vel feil igjen. Kan vel ikke dele opp nevneren på den måten....
Det er uansett en del av en større oppgave. Kan dere heller hjelpe meg med den, kanskje?
Den lyder som følger:
Mitt forsøk:
Implisitt derivasjon mhp. x over hele fjøla:
[tex]\frac{1}{1 + \left( \frac{10x}{y} \right) ^2} \cdot \left( 10y^{-1} - 10xy^{-2} \cdot y' \right) = 25 \pi y^{-2} - 50 \pi xy^{-3} \cdot y'[/tex]
Hokus pokus, faktorisering herfra til helsike.
[tex]y' = \frac{y}{x} \cdot \frac{25 \pi \left( y^2 + 100x^2\right) + 10y^3}{50 \pi \left( y^2 + 100x^2\right) + 10y^3}[/tex]
Dette trodde jeg da altså ble:
[tex]y' = \frac{3y}{2x} = \frac{3 \cdot 10}{2 \cdot 1} = \underline{15}[/tex]
Ettpunktsformel:
[tex]y = y' ( x - x_0 ) + y_0 = 15x - 15 + 10[/tex]
[tex]y = 15x - 5 \, \Rightarrow \, \underline{\underline{y = 15 \pi - 5}}[/tex]
Det er uansett en del av en større oppgave. Kan dere heller hjelpe meg med den, kanskje?
Den lyder som følger:
Find an equation of the tangent line to the curve
[tex]\textrm{arctan} \left( \frac{10x}{y} \right) = 25 \pi \frac{x}{y^2}[/tex]
at the point (x,y)=(1,10).
What is the y−coordinate to the tangent line at x=π?
Your answer should be an exact number.
Mitt forsøk:
Implisitt derivasjon mhp. x over hele fjøla:
[tex]\frac{1}{1 + \left( \frac{10x}{y} \right) ^2} \cdot \left( 10y^{-1} - 10xy^{-2} \cdot y' \right) = 25 \pi y^{-2} - 50 \pi xy^{-3} \cdot y'[/tex]
Hokus pokus, faktorisering herfra til helsike.
[tex]y' = \frac{y}{x} \cdot \frac{25 \pi \left( y^2 + 100x^2\right) + 10y^3}{50 \pi \left( y^2 + 100x^2\right) + 10y^3}[/tex]
Dette trodde jeg da altså ble:
[tex]y' = \frac{3y}{2x} = \frac{3 \cdot 10}{2 \cdot 1} = \underline{15}[/tex]
Ettpunktsformel:
[tex]y = y' ( x - x_0 ) + y_0 = 15x - 15 + 10[/tex]
[tex]y = 15x - 5 \, \Rightarrow \, \underline{\underline{y = 15 \pi - 5}}[/tex]
Ok, det virker som at deriveringen er riktig. Så regner jeg med faktoriseringen også er riktig, orker ikke regne på det nå hehe. Men da er det vel bare å sette inn x- og y-verdier, så skulle det bli riktig stigningstall.
Fysikk og matematikk (MTFYMA, Sivilingeniør/Master 5-årig) ved NTNU
Er ikke noe poeng å faktorisere det noe mer altså? Hadde vært litt gøy da. Se hvor langt man kom med et såpass kjipt uttrykk...
Men greit, da skal jeg prøve
Hvordan kjente du til online-testene forresten? Er du stud.ass/und.ass eller noe slikt?
Men greit, da skal jeg prøve

Hvordan kjente du til online-testene forresten? Er du stud.ass/und.ass eller noe slikt?
Beklager altså, var ikke meningen å rise deriveringen, den var helt riktig ^^ Men det siste du gjorde er som sagt ekstremt ulovlig, hehe.
Nei, jeg er førsteårsstudent på fysmat, så må selv gjennom online-trøbbelet hver uke =)
Nei, jeg er førsteårsstudent på fysmat, så må selv gjennom online-trøbbelet hver uke =)
Fysikk og matematikk (MTFYMA, Sivilingeniør/Master 5-årig) ved NTNU
Hehe, ja, merket det selv... Greit å gi ris til såpass horribel mattemisbruk.mikki155 skrev:Beklager altså, var ikke meningen å rise deriveringen, den var helt riktig ^^ Men det siste du gjorde er som sagt ekstremt ulovlig, hehe.
Nei, jeg er førsteårsstudent på fysmat, så må selv gjennom online-trøbbelet hver uke =)
Nice da. Ser ut til at du har grei kontroll på matten da, i alle fall.
Nå må jeg jo regne ut alt på nytt med andre tall. Selvfølgelig.
Generell bemerkning:
Jeg har ryddet opp i ordbruken i denne tråden.
Vennligst ikke bruk støtende uttrykk eller banning på matematikk.net.
Jeg har ryddet opp i ordbruken i denne tråden.
Vennligst ikke bruk støtende uttrykk eller banning på matematikk.net.