Eksamen R1 høst 2023

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderatorer: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Vaktmester
World works; done by its invalids
World works; done by its invalids
Innlegg: 827
Registrert: 26/04-2012 09:35

Oppgaven som pdf:
R1_H23.pdf
(1.04 MiB) Lastet ned 6243 ganger
SpreVitenskapVidere
Cantor
Cantor
Innlegg: 148
Registrert: 19/11-2021 02:26
Sted: Oslo
Kontakt:

Endelig har jeg fått tid til å lage løsningsforslag for R1 høsten 2023. Det kan hende at jeg gjorde feil noen steder eller kunne svart enklere andre steder. Si fra om du har noen forslag. Ny versjon etter tilbakemelding fra noen her (takk for det). Rettet på oppgave 1 og 4 og rettet noen små mangler på 5.
R1_H2023_LK20_Løsningsforslag.pdf
(2.1 MiB) Lastet ned 770 ganger
Oppdatert løsning kan lastes ned via linken
https://github.com/FO2020/Mateamtikk-R1-/tree/main

ps: Hadde lagt løsningen på feil tråd i går :D
Sist redigert av SpreVitenskapVidere den 26/11-2023 03:04, redigert 1 gang totalt.
Livet er et kaotisk system, og vi kan ikke forutsi det i mer enn noen få sekunder. Så nyt livet ditt med å være omsorgsfull og delende.
Farhan
Mattebruker
Weierstrass
Weierstrass
Innlegg: 453
Registrert: 26/02-2021 21:28

Føler trong til å kommentere løysingforslaget på eit par punkt ( Del 2 ).

OPPG. 3a

Påstand 1: Grafen til f har minst eitt ekstremalpunkt.
Her må det vere tilstrekkeleg å vise til eit moteksempel:
Tredjegradsfunksjonen f gitt ved
f( x ) = x[tex]^{3 }[/tex]

er monotont veksande ( f'( x) = 3 x[tex]^{2}[/tex] [tex]\geq[/tex] 0 ) og har såleis ingen ekstremalpunkt .
Konklusjon: Påstand 1 er feil

OPPG. 3b

Påstand 2 : Alle linjer på forma y = a x + b vil skjere grafen til f.

Denne påstanden bør vi kunne grunngje utan å utføre eit omstendeleg reknearbeid:
Den allmenne tredjegradsfunksjonen f har V[tex]_{f}[/tex] = D[tex]_{f}[/tex] = R ( gjeld alle polynomfunksjonar av odde grad , 3. , 5. , 7. , o.s.v. )
La P[tex]_{0}[/tex]( x[tex]_{0}[/tex] , y[tex]_{0}[/tex] ) vere eit fritt vald punkt på grafen til f. Dette punktet kan vi "passe inn " i linjelikninga
y = ax + b ved å velje konstantleddet b = y[tex]_{0}[/tex] - a[tex]\cdot[/tex]x[tex]_{0}[/tex]
Konklusjon: Påstand 2 er sann.

OPPG. 5 a

Kva for ein fart hadde pucken då han blei send av garde ?

[tex]\overrightarrow{v(0)}[/tex] = [tex]\overrightarrow{r'(0)}[/tex] = [ -16 , -10 ]

NB! Oppgåva spør ikkje "eksplisitt" etter [tex]\left | \overrightarrow{v(0)} \right |[/tex]

OPPG. 5b

Slik eg tolkar oppgåva er svaret på 5a meint som info som skal brukast i neste delspørsmål ( 5 b ).
Fartsvektoren [ -16 , - 10 ] indikerer at pucken held " stø kurs " gjennom 3. kvadrant ( grafen til [tex]\overrightarrow{r(t)}[/tex]
stadfester denne infoen ) heilt til den treffer vantet . Her spør oppgåva etter ein bestemt t- verdi. For å avgjere dette
spørsmålet må vi løyse to likningar :

I 8 ( e[tex]^{-t}[/tex] - t ) = - 30 II 5 ( e[tex]^{-t}[/tex] - t ) = - 15

t = 3 . 773 [tex]\approx[/tex] 3,8 ^^^^^^^^^^^^^^^^ t = 3. 0475 [tex]\approx[/tex] 3.0

Svar: Pucken treffer langsida i 3. kvadrant etter 3.0 sekund ( dette svaret kunne vi også ha kome fram til ved å ignorere [tex]e^{-t}[/tex]- leddet i [tex]\overrightarrow{r(t)}[/tex] )
Sist redigert av Mattebruker den 25/11-2023 13:02, redigert 1 gang totalt.
SpreVitenskapVidere
Cantor
Cantor
Innlegg: 148
Registrert: 19/11-2021 02:26
Sted: Oslo
Kontakt:

Mattebruker skrev: 25/11-2023 11:28 Føler trong til å kommentere løysingforslaget på eit par punkt ( Del 2 ).

OPPG. 3a

Påstand 1: Grafen til f har minst eitt ekstremalpunkt.
Her må det vere tilstrekkeleg å vise til eit moteksempel:
Tredjegradsfunksjonen f gitt ved
f( x ) = x[tex]^{3 }[/tex]

er monotont veksande ( f'( x) = 3 x[tex]^{2}[/tex] [tex]\geq[/tex] 0 ) og har såleis ingen ekstremalpunkt .
Konklusjon: Påstand 1 er feil

OPPG. 3b

Påstand 2 : Alle linjer på forma y = a x + b vil skjere grafen til f.

Denne påstanden bør vi kunne grunngje utan å utføre eit omstendeleg reknearbeid:
Den allmenne tredjegragsfunksjonen f har V[tex]_{f}[/tex] = D[tex]_{f}[/tex] = R.
La P[tex]_{0}[/tex]( x[tex]_{0}[/tex] , y[tex]_{0}[/tex] ) vere eit fritt vald punkt på grafen til f. Dette punktet kan vi "passe inn " i linjelikninga
y = ax + b ved å velje konstantleddet b = y[tex]_{0}[/tex] - a[tex]\cdot[/tex]x[tex]_{0}[/tex]
Konklusjon: Påstand 2 er sann.

OPPG. 5 a

Kva for ein fart hadde pucken då han blei send av garde ?

[tex]\overrightarrow{v(0)}[/tex] = [tex]\overrightarrow{r'(0)}[/tex] = [ -16 , -10 ]

NB! Oppgåva spør ikkje "eksplisitt" etter [tex]\left | \overrightarrow{v(0)} \right |[/tex]

OPPG. 5b

Slik eg tolkar oppgåva er svaret på 5a meint som info som skal brukast i neste delspørsmål ( 5 b ).
Fartsvektoren [ -16 , - 10 ] indikerer at pucken held " stø kurs " gjennom 3. kvadrant ( grafen til [tex]\overrightarrow{r(t)}[/tex]
stadfester denne infoen ) heilt til den treffer vantet . Her spør oppgåva etter ein bestemt t- verdi. For å avgjere dette
spørsmålet må vi løyse to likningar :

I 8 ( e[tex]^{-t}[/tex] - t ) = - 30 II 5 ( e[tex]^{-t}[/tex] - t ) = - 15

t = 3 . 773 [tex]\approx[/tex] 3,8 ^^^^^^^^^^^^^^^^ t = 3. 0475 [tex]\approx[/tex] 3.0

Svar: Pucken treffer langsida i 3. kvadrant etter 3.0 sekund ( dette svaret kunne vi også ha kome fram til ved å ignorere [tex]e^{-t}[/tex]- leddet i [tex]\overrightarrow{r(t)}[/tex] )
Takk for at du brukte tid til å gi tilbakemelding . Dette er noe bra for alle 😊
3a) Enig at det holder med et moteksempel
3b) Kunne vi da ikke brukt samme argument for andregradsfunksjon og da ville vi kommet til feil konklusjon ?
5a) I sensorveiledningen står det at begge to gir full uttelling . Eg blir litt forvirret med begrepene når de sier fart …noen ganger sier de banefart og da regnes det lengen på fartsvektoren (slik det ble gjort i løsningsforslag til eksempeleksamen R1 av udir).
5b) Enig med deg her . Eg prøvde å løse de to ligningene sammen som et ligningssett første gangen med x(r(t))=-30 , y(r(t))=-15 men da får man ingen løsning.
Livet er et kaotisk system, og vi kan ikke forutsi det i mer enn noen få sekunder. Så nyt livet ditt med å være omsorgsfull og delende.
Farhan
Mattebruker
Weierstrass
Weierstrass
Innlegg: 453
Registrert: 26/02-2021 21:28

Takk for respons !

Vedk. punkt 3b:

Har forståing for di innvending ! Men til skilnad frå tredjegradsfunksjonen har andregradsfunksjonen ein V[tex]_{f}[/tex] som er avgrensa i " eine enden "
Eksempel 1: f ( x ) = x[tex]^{2}[/tex] har V[tex]_{f }[/tex] = [ 0 , [tex]\rightarrow[/tex] >
Eksempel 2: f( x ) = - x[tex]^{2}[/tex] har V[tex]_{f}[/tex] = < [tex]\leftarrow[/tex] , 0 ]

Generelt gjeld at alle polynomfunksjonar av odde grad ( 3. , 5. , 7. , 9. , ...o.s.v.... ) har ein V[tex]_{f}[/tex] som dekkjer heile R.
SpreVitenskapVidere
Cantor
Cantor
Innlegg: 148
Registrert: 19/11-2021 02:26
Sted: Oslo
Kontakt:

Mattebruker skrev: 25/11-2023 13:20 Takk for respons !

Vedk. punkt 3b:

Har forståing for di innvending ! Men til skilnad frå tredjegradsfunksjonen har andregradsfunksjonen ein V[tex]_{f}[/tex] som er avgrensa i " eine enden "
Eksempel 1: f ( x ) = x[tex]^{2}[/tex] har V[tex]_{f }[/tex] = [ 0 , [tex]\rightarrow[/tex] >
Eksempel 2: f( x ) = - x[tex]^{2}[/tex] har V[tex]_{f}[/tex] = < [tex]\leftarrow[/tex] , 0 ]

Generelt gjeld at alle polynomfunksjonar av odde grad ( 3. , 5. , 7. , 9. , ...o.s.v.... ) har ein V[tex]_{f}[/tex] som dekkjer heile R.
For oppgave 5c
Pucken treffer øverste og nederste vegg når [tex] \begin{aligned}y=\pm 15\\
-30\leq x\leq 30\end{aligned}[/tex] og høyre/venstre vegg når \begin{aligned}x=\pm 30\\
-15\leq y\leq 15\end{aligned}. Men Cas klarer ikke å løse noen av de kombinasjonene sammen ? Kanskje bruke Python eller tenker jeg feil ?
Synes imidlertid at det blir litt rart å løse hver for seg og tilnærme begge to 3 ?
Livet er et kaotisk system, og vi kan ikke forutsi det i mer enn noen få sekunder. Så nyt livet ditt med å være omsorgsfull og delende.
Farhan
Mattebruker
Weierstrass
Weierstrass
Innlegg: 453
Registrert: 26/02-2021 21:28

Hallo igjen !

Vedk. punkt 5c: Løysingforslaget ditt er heilt OK, og slik eg sjølv ville ha løyst problemet. Vi kunne kanskje legge til at D[tex]_{\overrightarrow{r}}[/tex] = [ 0 , 3 ] ( jamfør svaret på forrige delspørsmål ( 5b ) ) . Dei funne t - verdiane ligg utafor definisjonsmengda [ 0 , 3 ] , og problemet er difor heilt uinteressant.
Eit anna problem: Ser i løysingforslaget ditt at du klipper ut " dokumentasjon " frå CAS og limer inn kopien i Mat.net. Kunne du gjere vel å forklare( vise ) framgangsmåten( prosedyren ) i denne operasjonen ? Vil setje pris på ei positiv tilbakemelding.
SpreVitenskapVidere
Cantor
Cantor
Innlegg: 148
Registrert: 19/11-2021 02:26
Sted: Oslo
Kontakt:

SpreVitenskapVidere skrev: 25/11-2023 00:06 Endelig har jeg fått tid til å lage løsningsforslag for R1 høsten 2023. Det kan hende at jeg gjorde feil noen steder eller kunne svart enklere andre steder. Si fra om du har noen forslag. Oppdatert versjon(fikset på oppgave 5 del 2).
R1_H2023_LK20_Løsningsforslag.pdf
(1.15 MiB) Lastet ned 81 ganger
Oppdatert løsning kan lastes ned via linken
https://github.com/FO2020/Mateamtikk-R1-/tree/main

ps: Hadde lagt løsningen på feil tråd i går :D
Livet er et kaotisk system, og vi kan ikke forutsi det i mer enn noen få sekunder. Så nyt livet ditt med å være omsorgsfull og delende.
Farhan
SpreVitenskapVidere
Cantor
Cantor
Innlegg: 148
Registrert: 19/11-2021 02:26
Sted: Oslo
Kontakt:

Mattebruker skrev: 25/11-2023 17:18 Hallo igjen !

Vedk. punkt 5c: Løysingforslaget ditt er heilt OK, og slik eg sjølv ville ha løyst problemet. Vi kunne kanskje legge til at D[tex]_{\overrightarrow{r}}[/tex] = [ 0 , 3 ] ( jamfør svaret på forrige delspørsmål ( 5b ) ) . Dei funne t - verdiane ligg utafor definisjonsmengda [ 0 , 3 ] , og problemet er difor heilt uinteressant.
Eit anna problem: Ser i løysingforslaget ditt at du klipper ut " dokumentasjon " frå CAS og limer inn kopien i Mat.net. Kunne du gjere vel å forklare( vise ) framgangsmåten( prosedyren ) i denne operasjonen ? Vil setje pris på ei positiv tilbakemelding.
Hadde ikke tenkt på definisjonensmengden på r, blir ikke den [0,3.05].
IMG_1360.jpeg
IMG_1360.jpeg (191.96 kiB) Vist 4259 ganger
Eg tar bare skjermbilder (windos knapp , shift, s ) så lime inn ...Eg bruker latex via Overleaf .
Sist redigert av SpreVitenskapVidere den 26/11-2023 10:29, redigert 1 gang totalt.
Livet er et kaotisk system, og vi kan ikke forutsi det i mer enn noen få sekunder. Så nyt livet ditt med å være omsorgsfull og delende.
Farhan
SinusCalculus
Fibonacci
Fibonacci
Innlegg: 3
Registrert: 25/11-2023 18:36

SpreVitenskapVidere skrev: 25/11-2023 00:06 Endelig har jeg fått tid til å lage løsningsforslag for R1 høsten 2023. Det kan hende at jeg gjorde feil noen steder eller kunne svart enklere andre steder. Si fra om du har noen forslag.
R1_H2023_LK20_Løsningsforslag.pdf

Oppdatert løsning kan lastes ned via linken
https://github.com/FO2020/Mateamtikk-R1-/tree/main

ps: Hadde lagt løsningen på feil tråd i går :D
Hei, synes du har løst oppgavene greit, men det er vel noen mangler. På oppgave 1 b) del to skjønner jeg ikke helt hvordan du fikk at det går omtrent 134 sekunder før konsentrasjonen er på 2, 5 mmol/L, når det egentlig skal være omtrent 160 før konsentrasjonen er 2, 0 mmol/L * (ikke 2, 5 mmol/L): (rad 1- 3), samt har du fått i oppgave 1 c) at det vil ta omtrent 283,6 sekunder før konsentrasjonen øker med mindre enn 0.001 mmol/L per
sekund, når det egentlig burde vært t >= 320,8 sekunder: (rad 4-5)

Se vedlagt fil.
Vedlegg
Oppgave 1 b og c).png
Oppgave 1 b og c).png (47.37 kiB) Vist 4363 ganger
SinusCalculus
Fibonacci
Fibonacci
Innlegg: 3
Registrert: 25/11-2023 18:36

Ønsker også å kommentere at jeg løste oppgave 5 c) også annerledes: Her finner vi først verdien av h og integrere det i funksjonen til arealet (se vedlagt fil):

A(x)= 4 * h* x+ x^2 --> A(x)= 4 * (80/x^2)* x+ x^2



Det miste samlede arealet finner vi ved å finne minimalpunktet, altså A’(x)=0. Minimalsverdien, altså det minste samlede arealet platene kan ha blir dermed 88.42 dm^2.
Vedlegg
Oppgave 5 c).png
Oppgave 5 c).png (41.68 kiB) Vist 4360 ganger
arunima
Fibonacci
Fibonacci
Innlegg: 1
Registrert: 25/11-2023 21:10

Hei :)
Jeg har løst denne samme oppgaven om kassen på en annen måte. For å finne minst areal har jeg brukt høyden som vi har allerede har funnet fra oppgave a siden den samlende arealet skal fortsatt være 120 dm^2, men vi vet at de sier i oppgaven at volumet kan ikke være mer en 80dm^3 så jeg løser v(x)= 80 og finner en verdi for x og denne verdien legger jeg inn i areal funksjonen. Er dette en riktig måte å løse oppgaven på?
Vedlegg
Screenshot 2023-11-25 at 21.14.38.png
Screenshot 2023-11-25 at 21.14.38.png (477.4 kiB) Vist 4331 ganger
SpreVitenskapVidere
Cantor
Cantor
Innlegg: 148
Registrert: 19/11-2021 02:26
Sted: Oslo
Kontakt:

SinusCalculus skrev: 25/11-2023 18:51
SpreVitenskapVidere skrev: 25/11-2023 00:06 Endelig har jeg fått tid til å lage løsningsforslag for R1 høsten 2023. Det kan hende at jeg gjorde feil noen steder eller kunne svart enklere andre steder. Si fra om du har noen forslag.
R1_H2023_LK20_Løsningsforslag.pdf

Oppdatert løsning kan lastes ned via linken
https://github.com/FO2020/Mateamtikk-R1-/tree/main

ps: Hadde lagt løsningen på feil tråd i går :D
Hei, synes du har løst oppgavene greit, men det er vel noen mangler. På oppgave 1 b) del to skjønner jeg ikke helt hvordan du fikk at det går omtrent 134 sekunder før konsentrasjonen er på 2, 5 mmol/L, når det egentlig skal være omtrent 160 før konsentrasjonen er 2, 0 mmol/L * (ikke 2, 5 mmol/L): (rad 1- 3), samt har du fått i oppgave 1 c) at det vil ta omtrent 283,6 sekunder før konsentrasjonen øker med mindre enn 0.001 mmol/L per
sekund, når det egentlig burde vært t >= 320,8 sekunder: (rad 4-5)

Se vedlagt fil.
Fikk 134 siden geogebra ga feil svar når jeg definerte funksjonen ved å skrive [tex] $f(x)=2,5+g(x)$[/tex]. Det ble riktig når jeg byttet g med funksjonsutrykket
Livet er et kaotisk system, og vi kan ikke forutsi det i mer enn noen få sekunder. Så nyt livet ditt med å være omsorgsfull og delende.
Farhan
SpreVitenskapVidere
Cantor
Cantor
Innlegg: 148
Registrert: 19/11-2021 02:26
Sted: Oslo
Kontakt:

SinusCalculus skrev: 25/11-2023 18:57 Ønsker også å kommentere at jeg løste oppgave 5 c) også annerledes: Her finner vi først verdien av h og integrere det i funksjonen til arealet (se vedlagt fil):

A(x)= 4 * h* x+ x^2 --> A(x)= 4 * (80/x^2)* x+ x^2



Det miste samlede arealet finner vi ved å finne minimalpunktet, altså A’(x)=0. Minimalsverdien, altså det minste samlede arealet platene kan ha blir dermed 88.42 dm^2.
Du har rett. Jeg måtte sjekke igjen og ser at det gikk litt feil ved åregne s først så areal. Det burde egentlig funket. Eg har endret det i løsningsforslag. Takk for tilbakemelding
Livet er et kaotisk system, og vi kan ikke forutsi det i mer enn noen få sekunder. Så nyt livet ditt med å være omsorgsfull og delende.
Farhan
SinusCalculus
Fibonacci
Fibonacci
Innlegg: 3
Registrert: 25/11-2023 18:36

Hei, Farhan. Jeg har gått gjennom løsningsforslaget ditt på nytt. Det ser ganske bra ut, men jeg vil gjerne komme med noen kommentarer angående oppgave 5 c).

Grafisk ser vi at skjæringspunktet mellom pucken og ishockeyspilleren er A=(-10.48,-6.55), når vi definerer begge vektorene. (se vedlagt fil)
Grafisk framstilling.png
Grafisk framstilling.png (44.59 kiB) Vist 4200 ganger




I CAS har vi kommet fram til at Pucken og ishockeyspilleren skjærer punktet A (Kollisjonspunktet), men i ulike tider. Derfor vil ikke spilleren bli truffet av pucken:
CAS oppgave 5 c).png
CAS oppgave 5 c).png (82.09 kiB) Vist 4200 ganger

Ishockey spilleren «skjærer punktet A (kollisjonspunktet)» etter s= 2.51 sekunder.

Mens pucken «skjærer punktet A (kollisjonspunktet)» etter t= 1.53 sekunder.
Ulike tider.png
Ulike tider.png (11.45 kiB) Vist 4200 ganger
Svar