Side 1 av 1
Fortegnslinje i 1T/R1
Lagt inn: 28/02-2021 04:12
av Bigeyes90
Hei

Jeg sliter litt med å vite hvordan jeg skal skrive svaret i en ulikhet når man lager fortegnslinje. Når er det man vet det er lukket intervaller med hakeparantes eller når det er åpne intervaller? Blir forvirret av det.
Tar i mot all hjelp

Re: Fortegnslinje i 1T/R1
Lagt inn: 28/02-2021 12:05
av SveinR
Hei, det er et lukket intervall dersom tallet er en del av løsningen. F.eks. om ulikheten er $x \geq 2$, så er tallet $2$ en del av løsningen siden det oppfyller ulikheten. Da kan vi skrive løsningsmengden som $x\in [2, \rightarrow\rangle$.
Derimot, dersom ulikheten var $x > 2$, ville ikke tallet $2$ vært en del av løsningen - fordi det ikke oppfyller ulikheten ($2$ er jo ikke større enn $2$, og her er vi ute etter alle $x$-verdier som faktisk er større enn $2$. I motsetning til ulikheten i sted, hvor vi også var ute etter alle $x$-verdier som var lik $2$). Så for denne ulikheten blir løsningsmengden $x\in \langle 2, \rightarrow\rangle$.
Kort oppsummert: Dersom det står $\geq$ eller $\leq$ i ulikheten får du lukkede intervaller (siden endepunktene er med i løsningen), men om det kun står $>$ eller $<$ (altså uten likhetstegn) får du åpne intervaller, og endepunktene er ikke med i løsningen.
Re: Fortegnslinje i 1T/R1
Lagt inn: 01/03-2021 00:30
av Bigeyes90
SveinR skrev:Hei, det er et lukket intervall dersom tallet er en del av løsningen. F.eks. om ulikheten er $x \geq 2$, så er tallet $2$ en del av løsningen siden det oppfyller ulikheten. Da kan vi skrive løsningsmengden som $x\in [2, \rightarrow\rangle$.
Derimot, dersom ulikheten var $x > 2$, ville ikke tallet $2$ vært en del av løsningen - fordi det ikke oppfyller ulikheten ($2$ er jo ikke større enn $2$, og her er vi ute etter alle $x$-verdier som faktisk er større enn $2$. I motsetning til ulikheten i sted, hvor vi også var ute etter alle $x$-verdier som var lik $2$). Så for denne ulikheten blir løsningsmengden $x\in \langle 2, \rightarrow\rangle$.
Kort oppsummert: Dersom det står $\geq$ eller $\leq$ i ulikheten får du lukkede intervaller (siden endepunktene er med i løsningen), men om det kun står $>$ eller $<$ (altså uten likhetstegn) får du åpne intervaller, og endepunktene er ikke med i løsningen.
TUSEN TAKK!!!!
