Side 1 av 1

Logaritmer

Lagt inn: 15/08-2020 15:01
av Ostepop
Hei

Loga x = y a^y=x

Sier at a=10 x=2 da er y=100 fordi 10^2=100

a^y=x -> 2^(100) blir ikke 2. Hva er det som er galt her ?

Loga x = y er a^y=x den inverse operasjonen av logaritmen ?

Re: Logaritmer

Lagt inn: 15/08-2020 17:00
av Aleks855
Du gjør en ørliten feil der.
Loga x = y a^y=x

Sier at a=10 x=2 da er y=100 fordi 10^2=100
Du har bytta om $x$ og $y$.

$10^2 = 100 \quad \Rightarrow \quad \log_{10}(100) = 2$.

$\log_{10}(100) = 2$ er det samme som å si "eksponenten på $10$ for å få $100$ må være $2$". Altså, $10^2 = 100$.

Re: Logaritmer

Lagt inn: 15/08-2020 17:24
av Ostepop
Loga x =y vil ikke a^y=x være ekvivalent ?

https://youtu.be/AAW7WRFBKdw?t=114

Vis jeg sier at log10^2=100 vil ikke a^y=x være den inverse operasjonen ? Vis ikke hva vil være det ?

Takk for at du tar deg tid til dette.

Re: Logaritmer

Lagt inn: 15/08-2020 17:24
av Hege Baggethun2020
Ostepop skrev:Hei

Loga x = y a^y=x

Sier at a=10 x=2 da er y=100 fordi 10^2=100

a^y=x -> 2^(100) blir ikke 2. Hva er det som er galt her ?

Loga x = y er a^y=x den inverse operasjonen av logaritmen ?
Hei Ostepop.

Jeg antar at du ønsker å finne den inverse funksjonen til [tex]\log_{a}(x) = y[/tex]? Gir deg et svar utifra den antagelsen.

Den logaritmiske funksjonen [tex]y = log_a(x)[/tex] er (som du allerede vet) den inverse funksjonen til eksponensialfunksjonen [tex]x = a^{y}[/tex]. Tallet [tex]a[/tex] kalles grunntallet (eller basis). Dersom du velger [tex]a = 10[/tex], så betyr dette at du bruker den briggske logaritmen. Videre velger du [tex]x=2[/tex].

Da får du følgende:

[tex]log_{10}(2)=y[/tex]
[tex]10^{log_{10}(2)}=10^y[/tex] (lovlig regneoperasjon - kanselleringsloven - hvor man utnytter det faktum at grunntallet er 10)
[tex]2=10^y[/tex] (grunnen til at venstre side nå blir [tex]2[/tex] er at [tex]10^{log_{10}(2)}=2[/tex])

og dermed har du oppfylt [tex]x = a^{y}[/tex].

Jeg tror notasjonen skapte litt forvirring for deg. Som i ditt eksempel, hvor du velger grunntallet 10, så betyr ikke dette at du skal gjøre regneoperasjonen [tex]10^2[/tex]. Det betyr derimot at du ifølge regneregler for logaritmer kan gjøre regneoperasjonene vist ovenfor med det grunntallet du har valgt. Du kan selv teste med andre grunntall. Et mye benyttet grunntall er det naturlige tallet [tex]e[/tex], som ligger mellom tallene 2 og 3. Utregningen blir da som følger hvis vi fortsatt benytter [tex]x=2[/tex]:

[tex]log_{e}(2)=y[/tex]
[tex]e^{log_{e}(2)}=e^y[/tex] (her benytter man det faktum at grunntallet er [tex]e[/tex])
[tex]2=e^y[/tex]

Håper det var til litt hjelp.

Hilsen Hege.

Re: Logaritmer

Lagt inn: 15/08-2020 18:04
av Ostepop
Takker