Lineære funksjoner og stigningstall (1T)

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Lineære funksjoner og stigningstall (1T)

Innlegg 1Telev » 10/05-2020 10:36

"Vis at påstanden nedenfor er riktig.

Påstand:
Dersom grafane til to lineære funksjonar står normalt på kvarandre, vil produktet av
stigingstala vere lik -1 ."


Jeg skjønner ikke hvordan jeg skal bevise påstanden :? :| På forhånd, takk for hjelp :D
1Telev offline

Re: Lineære funksjoner og stigningstall (1T)

Innlegg SveinR » 10/05-2020 12:00

Det første vi bør gjøre er å tegne en hjelpefigur :) Og det er flere måter å løse dette på, her er en mulig fremgangsmåte.

Bilde

Her har jeg markert de to stigningstallene $a_1$ og $a_2$ (avstanden vi må opp/ned i $y$-retning etter å ha gått en lengde $1$ frem i $x$-retning).

For å kunne vise påstanden må du vite noe om forholdet mellom disse stigningstallene. Hint: Formlikhet.
SveinR offline
Jacobi
Jacobi
Innlegg: 309
Registrert: 22/05-2018 21:12

Re: Lineære funksjoner og stigningstall (1T)

Innlegg 1Telev » 10/05-2020 13:46

SveinR skrev:Det første vi bør gjøre er å tegne en hjelpefigur :) Og det er flere måter å løse dette på, her er en mulig fremgangsmåte.

Bilde

Her har jeg markert de to stigningstallene $a_1$ og $a_2$ (avstanden vi må opp/ned i $y$-retning etter å ha gått en lengde $1$ frem i $x$-retning).

For å kunne vise påstanden må du vite noe om forholdet mellom disse stigningstallene. Hint: Formlikhet.


Tusen takk! Jeg har nå bevist at trekanten er formlike, og deretter funnet forholdstallet til stigningstallene: $a_2$ = 1/$a_1$. 1/$a_1$ og $a_1$ er altså absoluttverdiene til stigningstallene til to linjer som står 90 grader på hverandre. Men, jeg skjønner fremdeles ikke hvordan produktet av stigningstallene kan være lik -1?
1Telev offline

Re: Lineære funksjoner og stigningstall (1T)

Innlegg SveinR » 10/05-2020 13:53

Da er du nesten helt i mål :)

For det som ikke fremgår av figuren er at siden graf $2$ synker så er det stigningstallet negativt. Så hvis $a_2$ er absoluttverdien av stigningstallet blir det "ekte" stigningstallet $-a_2$.

Og da har vi produktet $a_1\cdot (-a_2) = a_1\cdot \left(-\frac{1}{a_1}\right)$.
SveinR offline
Jacobi
Jacobi
Innlegg: 309
Registrert: 22/05-2018 21:12

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot] og 16 gjester