Det å avgjøre om to hendinger er uavhengige

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Det å avgjøre om to hendinger er uavhengige

Innlegg turbobjørn » 05/05-2020 10:09

3.144) b) (Sinus R1) https://i.imgur.com/AXrArYB.png
Jeg har løst den slik:

Vi har at [tex]P(T|L)=0,33[/tex] og at [tex]P(T)=0,22[/tex].
Altså er det slik at [tex]P(T|L)\neq P(T)\Rightarrow[/tex] Nei, å tippe fotball er ikke uavhengig av det å spille lotto.

Men kunne man ikke også ha gjort det på følgende måter?
Versjon 1
Vi har at [tex]P(L|T)=0,45[/tex] og at [tex]P(L)=0,30[/tex].
Altså er det slik at [tex]P(L|T)\neq P(L)\Rightarrow[/tex] Nei, å tippe fotball er ikke uavhengig av det å spille lotto.
Versjon 2
[tex]P(L\cap T)=P(L)*P(T)\Leftrightarrow 0,10=0,30*0,22\Leftrightarrow 0,10\neq 0,066\Rightarrow[/tex] Nei, å tippe fotball er ikke uavhengig av det å spille lotto.

Er ikke alle disse tre metodene fullbyrdes likegod? For T kan vel ikke være uavhengig av L dersom L ikke er uavhengig av T? Med det siste mener jeg:
Dersom [tex]P(T|L)=P(T)[/tex] må også [tex]P(L|T)=P(L)[/tex]?
Som betyr at vi ikke kan ha:
[tex]P(T|L)=P(T)[/tex] og [tex]P(L|T)\neq P(L)[/tex]?
turbobjørn offline
Noether
Noether
Innlegg: 43
Registrert: 11/12-2017 19:28

Re: Det å avgjøre om to hendinger er uavhengige

Innlegg turbobjørn » 08/05-2020 17:26

Bumper denne i håp om at noen flere ser den.
turbobjørn offline
Noether
Noether
Innlegg: 43
Registrert: 11/12-2017 19:28

Re: Det å avgjøre om to hendinger er uavhengige

Innlegg SveinR » 08/05-2020 17:38

Ja, det stemmer at du like gjerne kan sjekke om $P(L | T) = P(L)$ som å sjekke om $P(T | L) = P(T)$. Hvis den ene av disse likhetene holder vil også den andre holde.

Du kan som du sier også sjekke om $P(L \cap T) = P(L)\cdot P(T)$ for å vurdere om de er uavhengige. Så alle metodene er forsåvidt likeverdige.
SveinR offline
Jacobi
Jacobi
Innlegg: 310
Registrert: 22/05-2018 21:12

Re: Det å avgjøre om to hendinger er uavhengige

Innlegg turbobjørn » 08/05-2020 19:48

SveinR skrev:
Takk, det hjalp veldig å få bekreftet at jeg faktisk tenker riktig. :)
turbobjørn offline
Noether
Noether
Innlegg: 43
Registrert: 11/12-2017 19:28

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 15 gjester