Vektorregning

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Vektorregning

Innlegg Gjest » 04/11-2019 22:04

Hei.

Sitter litt fast på deloppgave b.
Hele oppgaven går som følger og er hentet fra Sinus R1.

a) Ei rett linje l går gjennom punktene A(-2,3) og b(6,-1). Finn parameterframstilling.

b) Ei annen rett linje m er gitt ved likningen 2x-2y+1=0.
Finn ved regning skjæringspunktet mellom linjene l og m.

Er litt usikker på hvordan jeg skal gå frem på b. Takk for tips og innspill!
Gjest offline

Re: Vektorregning

Innlegg Kristian Saug » 04/11-2019 22:32

Hei,

Da forstår jeg at oppg a har gått greit og at du fant parameterfremstilling for linja l.

Tips for oppgave b:
Sett x- og y-uttrykkene for linja l inn i m's likning 2x-2y+1=0
Da får du t-verdien for skjæringspunktet og setter den inn i parameteruttrykket til linja l. Og du har koordinatene til skjæringspunktet, S.

Fasit:
S(1, 3/2)
Kristian Saug offline

Re: Vektorregning

Innlegg Gjest » 04/11-2019 22:50

Kristian Saug skrev:Hei,

Da forstår jeg at oppg a har gått greit og at du fant parameterfremstilling for linja l.

Tips for oppgave b:
Sett x- og y-uttrykkene for linja l inn i m's likning 2x-2y+1=0
Da får du t-verdien for skjæringspunktet og setter den inn i parameteruttrykket til linja l. Og du har koordinatene til skjæringspunktet, S.

Fasit:
S(1, 3/2)


Hei og takk for raskt svar. Mulig at jeg har missforstått noe og spør dumt, men forstår ikke helt hvordan du kan sette inn et uttrykk som består av både x og y. På en typisk oppgave av samme slag har du vanligvis en parameterframstilling hvor x og y er adskilt og da er det jo forholdsvis grei skuring å sette de opp mot hverandre.
Gjest offline

Re: Vektorregning

Innlegg Kristian Saug » 05/11-2019 09:35

Hei igjen,

Med vektor AB/4 som retningsvektor (2, -1) og punkt A(-2, 3) som utgangspunkt får vi parameterframstillingen for l:
x = -2 + 2t
y = 3 - t

satt inn i likningen for m: 2x - 2y + 1 = 0 får vi:

2(-2 + 2t) -2(3 - t) + 1 = 0
-4 + 4t - 6 + 2t + 1 = 0
6t = 9
t = 9/6 = 3/2

setter t-verdien inn i parameterframstilling for l og får:

x = -2 + 2t = -2 + 2*(3/2) = -2 + 3 = 1
y = 3 - t = 3 - 3/2 = 3/2

altså skjæringspunkt S mellom l og m:

S(1, 3/2)

Du kommer bort i denne metoden både i R1 og R2. Å sette inn en parameterframstilling i andre uttrykk, f eks likning for plan og kule.
Kristian Saug offline

Re: Vektorregning

Innlegg Gjest » 05/11-2019 19:54

Kristian Saug skrev:Hei igjen,

Med vektor AB/4 som retningsvektor (2, -1) og punkt A(-2, 3) som utgangspunkt får vi parameterframstillingen for l:
x = -2 + 2t
y = 3 - t

satt inn i likningen for m: 2x - 2y + 1 = 0 får vi:

2(-2 + 2t) -2(3 - t) + 1 = 0
-4 + 4t - 6 + 2t + 1 = 0
6t = 9
t = 9/6 = 3/2

setter t-verdien inn i parameterframstilling for l og får:

x = -2 + 2t = -2 + 2*(3/2) = -2 + 3 = 1
y = 3 - t = 3 - 3/2 = 3/2

altså skjæringspunkt S mellom l og m:

S(1, 3/2)

Du kommer bort i denne metoden både i R1 og R2. Å sette inn en parameterframstilling i andre uttrykk, f eks likning for plan og kule.


Flott! Tusen takk for grundig og god forklaring.
Gjest offline

Hvem er i forumet

Brukere som leser i dette forumet: Google Adsense [Bot], MSN [Bot] og 57 gjester