Skalar- og vektorregning
Lagt inn: 21/12-2010 18:02
Forstår ikke hvordan jeg løser denne oppgaven:
Vektorene u og v er gitt ved
u=a+b og v=a-b
der a og b er to ikke-parallelle vektorer.
Finn u*v når |a|= 5 og |b|=3
Jeg tenkte u*v = (a+b)*(a-b) = a^2-a*b+b*a-b^2
Jeg vet at a^2 = |a|^2 og at b^2=|b|^2, så de er greie.
Men a*b forstår jeg ikke hvordan jeg skal finne, for det er ikke oppgitt en vinkel mellom vektor a og b. De er ikke-parallelle, så vinkelen kan ikke være 0, slik at cos0 = 1. Da hadde det jo vært enkelt.
Vektorene u og v er gitt ved
u=a+b og v=a-b
der a og b er to ikke-parallelle vektorer.
Finn u*v når |a|= 5 og |b|=3
Jeg tenkte u*v = (a+b)*(a-b) = a^2-a*b+b*a-b^2
Jeg vet at a^2 = |a|^2 og at b^2=|b|^2, så de er greie.
Men a*b forstår jeg ikke hvordan jeg skal finne, for det er ikke oppgitt en vinkel mellom vektor a og b. De er ikke-parallelle, så vinkelen kan ikke være 0, slik at cos0 = 1. Da hadde det jo vært enkelt.