Jeg har et tak med 30 gaders helling. En antennemast skal settes opp. For at antennen ikke skal berøre taket, må masten være 2 meter fra taket i toppen. Det blir altså en trekant med 30, 60 og 90 grader.
<---- 2m ----> <--Toppunkt
\ =30 gr. || = vinkel lik 90 grader
\ ||
\ ||
\ ||<-- mast
\ ||
\ ||
__________\ ||= vinkel lik 60 grader
| ^
| ||
| Takrenne
Lengden langs taket (hypotenusen) blir vel 2 ganger høyden på masta (korteste katet), mens det lengste katetet er 2meter.
Proporsjonene i tegningen over er ikke riktige. Spørsmålet er altså hvor lang må masta være fra takrenna til toppunktet (markert på tegningen)for at topppunktet skal komme to meter fra taket?
Jeg burde egentlig klart å regne det ut selv, men hodet har stanset helt opp i dag. Jeg vil ikke bare vite svaret, men også utregninga.
Takk for svar.
Mvh
Bjørn
Finn høyden i en trekant med kun ett katet kjent
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Oops!
Jeg ser at "tegninga" mi i innlegget over ble helt feil. Kanskje dere skjønner likevel?
Mvh
Bjørn
Jeg ser at "tegninga" mi i innlegget over ble helt feil. Kanskje dere skjønner likevel?
Mvh
Bjørn
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg
Hei!
Dette var ikke helt klart..
Dersom du setter masta på mønet trenger den bare være to meter ....
Jeg går ut fra at så ikke er tilfelle?
Har du noe mål på tak?
Du får to formlike trekanter. Dersom jeg forstår deg riktig blir lengste katet i trekanten som omfatter antennemasta 2 meter... ?
Videre er det riktig som du sier at ved30-60-90 trekanter er kortese katet halvparten av hypotenusen.
MVH
KM
Dette var ikke helt klart..
Dersom du setter masta på mønet trenger den bare være to meter ....
Jeg går ut fra at så ikke er tilfelle?
Har du noe mål på tak?
Du får to formlike trekanter. Dersom jeg forstår deg riktig blir lengste katet i trekanten som omfatter antennemasta 2 meter... ?
Videre er det riktig som du sier at ved30-60-90 trekanter er kortese katet halvparten av hypotenusen.
MVH
KM
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg

Det er nok lurt å lese innlegget ordentlig før man svarer.
Du har en trekant der lengste katet er kjent. Korteste katet er x og hypotenus 2x....
OK?
MVH

Det er helt korrekt. Lengste katet er kjent (=2meter), korteste katet er x og hypotenusen er 2x.
Det er ikke mulig å sette masta i mønet fordi jeg har valmtak.
Det kunne også vært interessant å vite utregningen av det samme regnestykket med andre takvinkler (da er ikke 30-60-90 regelen til noen nytte). I mitt tilfelle er takvinkelen 30 grader.
Mvh
Bjørn
Det kunne også vært interessant å vite utregningen av det samme regnestykket med andre takvinkler (da er ikke 30-60-90 regelen til noen nytte). I mitt tilfelle er takvinkelen 30 grader.
Mvh
Bjørn
Takk for svar, oro2! Det hele koker ned til en god gammeldags andregradsligning. Da kommer jeg til en masthøyde på ca. 1,15 meter. Det betyr at hele masta må minst være vegghøyden (fra bakken til takrenna som her er 4 meter) + 1,15 = 5,15 meter. Da vet jeg at en standard rørlengde på 6 meter holder.
Ha en fin helg.
Mvh
Bjørn
Ha en fin helg.
Mvh
Bjørn
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg

Nå blir det vell byggteknisk her

Det er vel alltid mulig å sette masta på toppen av taket!!
Dersom vinklene er andre enn beskrevet er vel oppgaven underbetemt, dvs, du trenger mer info om taket!!
MVH
KM
Jada, det går også an å bruke målebånd for å gjøre det rent praktisk. Det var nå matematikken i det hele som er interessant for meg i dette tilfellet. Altså hvilke regler som kan brukes når man kjenner det lengste katetet, vinklene og intet mer.
Det svaret jeg fikk av oso2 ser riktig ut for meg, og er svar på spørsmålet mitt, men kan ikke brukes dersom vinklene ikke er 30-60-90 grader. Jeg regner med at dersom vinklene er noe annet, må man til med sinus og cosinus, som vel er utover ungdomsskolepensum og dermed hører hjemme under spørsmål for videregående skole.
Takk for et kjempefint og nyttig nettsted, forresten
!
Mvh
Bjørn[/img]
Det svaret jeg fikk av oso2 ser riktig ut for meg, og er svar på spørsmålet mitt, men kan ikke brukes dersom vinklene ikke er 30-60-90 grader. Jeg regner med at dersom vinklene er noe annet, må man til med sinus og cosinus, som vel er utover ungdomsskolepensum og dermed hører hjemme under spørsmål for videregående skole.
Takk for et kjempefint og nyttig nettsted, forresten


Mvh
Bjørn[/img]
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg

Det forundrer meg ikke at svaret fra Oro2 er riktig!
Forøvrig har du helt rett.
MVH
KM
Og dette skal være ungdomsskolen og nedover? *rister på hodet*
oro er så god!! =D kissah
oro er så god!! =D kissah
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg
Ja, oppgaven er typisk for 10. trinn.
km
km
Me_15 skrev:Og dette skal være ungdomsskolen og nedover?
Dette svaret kommer kanskje litt seint, men...administrator skrev:Ja, oppgaven er typisk for 10. trinn.
Oppgaven hadde nok sett lettere ut for en 10-klassing hvis figuren hadde vært litt bedre.. pluss at det var (som nevnt av admin) litt byggtekninske ting som kanskje forvirret noen litt.
Jeg vet at dette ikke er pensum på ungdomsskolen, men for å slippe å lage et nytt tema skriver jeg det her likevel.Bluesman skrev:Det kunne også vært interessant å vite utregningen av det samme regnestykket med andre takvinkler (da er ikke 30-60-90 regelen til noen nytte). I mitt tilfelle er takvinkelen 30 grader.
(til me_15 og andre (eks)ungdomsskoleelever.. dette er ikke pensum i 10. klasse, men i første klasse på vgs allmennfag hvis jeg ikke husker helt feil)
Hvis du kaller takets hellningsvinkel y, så har du en rettvinklet trekant med en katet som er 2, en katet som er x, og en vinkel som er y (vinkel mellom katet med lengde 2 og hypotenusen). Da kan du bruke tangens. tan(y) = x/2
x = 2 tan(y)
Hvis du nå setter inn y=30 får du samme svar som med den andre metoden.