Hei!
For det første, takk for alle svar fra tidligere spørsmål.
Jeg sitter her med enda en nøtt:
En familie har tre barn som ikke er tvillinger eller trillinger. Hvor sannsynlig er det at
det er èn gut og to jenter i søskenflokken???
Sannsynlighetsregning!!!
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg
Hei!
Er ikke hetlt sikker på at jeg skjønr Vegards svar, hva er
vi antar at mulighetene for gutt eller jente er like store (det er de IKKE)
Lag et tre!!
Muligheten for den førsteføtte er gutt eller jente, tegn grener.
Muligheten for den andere dersom gutt er gutt eller jente,
Dersom jente er det gutt eller jente. Tegn grener.
Gjør dette også for den tredje.
Dersom du har tegnet riktig blir det snakk om ren opptelling.
Hvor mange grener tilfredstiller det kravet oppgaven hadde?
MVH
Kenneth Marthinsen
Er ikke hetlt sikker på at jeg skjønr Vegards svar, hva er
måter? Vel, mulig du har rett, men tenk litt på dette:3C2 eller 3C1
vi antar at mulighetene for gutt eller jente er like store (det er de IKKE)
Lag et tre!!
Muligheten for den førsteføtte er gutt eller jente, tegn grener.
Muligheten for den andere dersom gutt er gutt eller jente,
Dersom jente er det gutt eller jente. Tegn grener.
Gjør dette også for den tredje.
Dersom du har tegnet riktig blir det snakk om ren opptelling.
Hvor mange grener tilfredstiller det kravet oppgaven hadde?
MVH
Kenneth Marthinsen
Vegard, jeg tror du viser litt for avansert matematikk akkurat nå. Tror ikke Amanda har lært det vi har på VK1 ennå, og hvis jeg ikke tar helt feil blir det feil å bruke binominalkoeffesienter her ettersom det er et ordnet utvalg (Rekkefølgen har noe å si) når Amanda skal finne sannsynligheten. Det du regner ut er uordnet utvalg.
Men Amanda, tror Administrator er inne på noe, og jeg er temmelig sikker på at du kan gå ut i fra at sannsynligheten for at det er gutt og jente er lik dersom det ikke er opplyst noe annet.

Men Amanda, tror Administrator er inne på noe, og jeg er temmelig sikker på at du kan gå ut i fra at sannsynligheten for at det er gutt og jente er lik dersom det ikke er opplyst noe annet.

-
- Cayley
- Innlegg: 52
- Registrert: 19/04-2003 19:13
- Sted: Mo i Rana
Er virkelig rekkefølgen nøye?
Jeg oppfatter det slik at det skal finnes 1 gutt og 2 jenter, ikke at det skal være først 1 gutt, så 2 jenter.
Jeg oppfatter det slik at det skal finnes 1 gutt og 2 jenter, ikke at det skal være først 1 gutt, så 2 jenter.
"Rør ikke mine sirkler", Arkimedes.
Joda, det er mange måter dette kan gjøres på hvis man bruker matte fra VK1. Men jeg synes det er viktig at man prøver å rettlede på nivået til de som spør, hvis ikke kan det forvirre mer en hjelpe. Hvis man skal bruke den uniforme modellen som går ut på gunstige/mulige som Amanda sikkert kjenner til blir ikke dette helt rett. Det blir jo rett svar, men rent prinsippielt blir det en liten glipp. Mulige blir jo et ordnet utvalg med tilbakelegging altså 2^3.. Hvis du så klarer å finne mulige utvlg Amanda, så har du skjønt prinsippet.
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg
Hei!
Jeg tolker oppaven slik at det ikke har betydning når gutten kommer, det som gjelder er to jenter og en gutt. Til Abel: Joda, dersom intet annet er gitt antar man at sannsynligheten er 50/50.
TEGN ET TRE
KM
Jeg tolker oppaven slik at det ikke har betydning når gutten kommer, det som gjelder er to jenter og en gutt. Til Abel: Joda, dersom intet annet er gitt antar man at sannsynligheten er 50/50.
TEGN ET TRE



KM
-
- Cayley
- Innlegg: 52
- Registrert: 19/04-2003 19:13
- Sted: Mo i Rana
Sist redigert av Vegard, VK1 - 2MX den 25/04-2003 21:06, redigert 1 gang totalt.
"Rør ikke mine sirkler", Arkimedes.
At rekkefølgen har noe å si betyr at det er forskjell på JJG og JGJ.
Da er det ordnet utvalg. Hvis man har uordnet slik som når man trekker lotto, så betyr ikke rekkefølgen på tallene noe, fordi de bløir ordnet i stigende rekkefølge likevel. Når man regner på uordnet utvalg bruker man binomial koeffesienter, og dette representerer ikke et tilfelle der det er uordnet utvalg. Men man kan bruke binomialkoeffesienter hvis man lager seg et oppsett gjennom hypergeometrisk sannsynlighetsregning.
3C2 = (3 2) binominalkoeffesient.
Da er det ordnet utvalg. Hvis man har uordnet slik som når man trekker lotto, så betyr ikke rekkefølgen på tallene noe, fordi de bløir ordnet i stigende rekkefølge likevel. Når man regner på uordnet utvalg bruker man binomial koeffesienter, og dette representerer ikke et tilfelle der det er uordnet utvalg. Men man kan bruke binomialkoeffesienter hvis man lager seg et oppsett gjennom hypergeometrisk sannsynlighetsregning.
3C2 = (3 2) binominalkoeffesient.

Når alle mulige utfall i et eksperiment har like stor sannsynlighet, er den teoretiske sannsynligheten for et av utfallene lik
1
antall mulige utfall
Når vi ønsker å finne sannsynligheten for flere gunstige utfall, har vi at sannsynligheten er lik
antall gunstige utfall
antall mulige utfall
Sannsynligheten for at to/flere enkeltutfall skal intreffe samtidig, er lik produktet av sannsynlighetene for hvert av enkeltutfallene.
I dette tilfellet står det om gutt/jente. Sjansen for at det første barnet er gutt, er 1/2. Det samme er sjansen for at det neste blir jente. Og det neste. Blir det rett å skrive 1/2 * 1/2 * 1/2 = 1/8 i dette tilfellet?
Kjekt å være sikker på slik før eksamen
1
antall mulige utfall
Når vi ønsker å finne sannsynligheten for flere gunstige utfall, har vi at sannsynligheten er lik
antall gunstige utfall
antall mulige utfall
Sannsynligheten for at to/flere enkeltutfall skal intreffe samtidig, er lik produktet av sannsynlighetene for hvert av enkeltutfallene.
I dette tilfellet står det om gutt/jente. Sjansen for at det første barnet er gutt, er 1/2. Det samme er sjansen for at det neste blir jente. Og det neste. Blir det rett å skrive 1/2 * 1/2 * 1/2 = 1/8 i dette tilfellet?
Kjekt å være sikker på slik før eksamen

-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg
Hei!
Nei, det blir ikke riktig. Tegn et tre som forklart over så vil du skjønne hvorfor.
MVH
Kenneth Marthinsen
Nei, det blir ikke riktig. Tegn et tre som forklart over så vil du skjønne hvorfor.
MVH
Kenneth Marthinsen
-
- Sjef
- Innlegg: 893
- Registrert: 25/09-2002 21:23
- Sted: Sarpsborg
Ja, og metoden over vil virke også da!
KM
KM