Search found 32 matches

by Matteslusken
26/10-2010 13:00
Forum: Høyskole og universitet
Topic: Finne alle vektorer som tilfredstiller et gitt kriterie
Replies: 2
Views: 1201

Vektorer som tilfredstiller et t

Ja, supert Karl Erik, takk for svaret. Skjønner hva du mener, og fant også ut at man kunne sette det opp slik (tilgi meg at jeg ikke bruker like fin tegnsetting som deg):

[3 -1 | 2]
[-1 4 | 7]

Og så gjøre radoperasjoner på dette til man kommer til enhetsmatrisen, og da har man \vec x = (x,y), og ...
by Matteslusken
26/10-2010 00:00
Forum: Høyskole og universitet
Topic: Finne alle vektorer som tilfredstiller et gitt kriterie
Replies: 2
Views: 1201

Finne alle vektorer som tilfredstiller et gitt kriterie

Jeg har en lineær transformasjon T : R^2 > R^2 med en standard matrise A.

Skal finne alle vektorer x i R^2 slik at T(x) = w, hvor w har en bestemt verdi.

Har sett at for å finne T(x) kan man bruke A multiplisert med x.

Kan da formelen Ax = [w] brukes for å finne alle vektorer x i R^2.

Hvordan ...
by Matteslusken
04/03-2009 21:04
Forum: Høyskole og universitet
Topic: Integralrekning på avstander?
Replies: 3
Views: 1883

Kan du ikke lage deg en funksjon som er differansen mellom f(x) og g(x), og behandle det videre derfra?

Jo, har tenkt på noe sånt. Men nå gir jeg opp hele den greia der, det er bare et lite punkt på en forøvrig stor oppgave, så om jeg har feil på den, får jeg heller leve med det. Takk for ...
by Matteslusken
04/03-2009 20:19
Forum: Høyskole og universitet
Topic: Integralrekning på avstander?
Replies: 3
Views: 1883

Re: Integralrekning på avstander?

Kanskje jeg skal uttrykke meg enklere.

Si at man har et gitt intervall, og så har man to funksjoner. Hvordan kan man finne den rette linjen som gir den lengste avstanden mellom et punkt på hver av funksjonene?
by Matteslusken
04/03-2009 18:47
Forum: Høyskole og universitet
Topic: Integralrekning på avstander?
Replies: 3
Views: 1883

Integralrekning på avstander?

Har en funksjon, denne funksjonen har en skrå asymptote. Funksjonen krysser ikke asymptoten på noe punkt. Ca ved (0,0) kan det fra et bilde av graf og skrå asymptote se ut som at dette er punktet på funksjonen som er lengst unna den skrå asymptotelinja. Spørsmålet er hvilket punkt på kurva ...
by Matteslusken
05/12-2008 17:48
Forum: Høyskole og universitet
Topic: Induksjonsforståelsesproblem.
Replies: 2
Views: 1322

Ja, det visste jeg egentlig at 2^(n+1) = 2*2^n. (skjønner det er litt rustent med kunnskapene her).

Nemnerene er henholdsvis 2^n og 2^(n+1) = 2*2^n.

For å få like nemnere i begge brøkene, så ganger jeg oppe og nede på den første brøken med 2.

Men da får jeg

Linje C: 2- ( ( 2(n+2) + (n+1) ) / 2 ...
by Matteslusken
05/12-2008 16:34
Forum: Høyskole og universitet
Topic: Induksjonsforståelsesproblem.
Replies: 2
Views: 1322

Induksjonsforståelsesproblem.

Holder på med induksjonsoppgaver (diskret mattematikk).

Det er noe jeg ikke skjønner:

Hvordan kan man gå fra

linje A: 2- ( (n+2) / (2^n) ) + ( (n+1) / (2^(n+1)) )

til

linje B: 2- ( ( 2(n+2)-(n+1) ) / 2^(n+1) )

?

Det er da induksjonstrinnet jeg holder på med, og hva oppgaven i seg selv går ut ...
by Matteslusken
11/05-2008 21:32
Forum: Høyskole og universitet
Topic: Separabel differensiallikning.
Replies: 2
Views: 1690

Du gjorde en stygg feil da du skreiv av fasit: \frac1{\tan x} er ikke det samme som \tan^{-1}x=\arctan x .

Slå opp arctan om du ikke veit hva det er og finn også ut hva den deriverte av denne er; da vil du også se løsninga på det andre problemet ditt.

http://en.wikipedia.org/wiki/Inverse ...
by Matteslusken
11/05-2008 20:00
Forum: Høyskole og universitet
Topic: Separabel differensiallikning.
Replies: 2
Views: 1690

Separabel differensiallikning.

Flott side dette her, og har fått god hjelp her før!

Det er et problem som jeg ikke finner ut av:

2yy`=1/(x^2+1)

Her er poenget å finne frem til en funksjon y(x).

Korrekt svar er iflg fasit [symbol:rot] ((1/tan X) + C)

Jeg gjør følgende:

2yy`=1/(x^2+1)

yy`= 1/2 * 1/(x^2+1)

y dy/dx = 1/2 * 1 ...
by Matteslusken
26/03-2008 02:19
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Refleksjon og grensevinkel for totalrefleksjon
Replies: 1
Views: 2121

Lette litt på nettet

Fant denne siden:

http://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/refrn/u14l3b.html

http://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/refrn/u14l3b2.gif

Hvis man ser på denne tegningen, så ser man at det går en stråle opp av vannet, og en nedover. Den som går opp blir gradvis svakere, og den ...
by Matteslusken
26/03-2008 01:53
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Refleksjon og grensevinkel for totalrefleksjon
Replies: 1
Views: 2121

Refleksjon og grensevinkel for totalrefleksjon

Dette er egentlig et fysikkspørsmål, men håper at noen kan hjelpe meg her likevel. Dersom dette er feilpostet, værsåsnill og rettlede meg til å poste på rett sted, istedetfor å flame meg.

Okay;

Si at vi har en glasskule.

Vi skjæret ut en skive på av denne glasskulen i midten av den. Skiven er ...
by Matteslusken
11/03-2008 17:35
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Lett integralspørsmål.
Replies: 2
Views: 1308

Takker så mye for denne kunnskapen du delte med meg!
by Matteslusken
11/03-2008 17:06
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Lett integralspørsmål.
Replies: 2
Views: 1308

Lett integralspørsmål.

Si at man har følgende oppgave:

[symbol:integral] (4x+6)dx

Hvordan skal dette uttales ? Jeg skjønner at [symbol:integral] er et integrasjonstegn.

Og f(x) er jo integranden i denne oppgaven, og hele uttrykket er et ubestemt integral fordi det inneholde en ubestemt konstant C.

For å løse [symbol ...
by Matteslusken
06/03-2008 14:42
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Nullpunkter og trigonometri.
Replies: 4
Views: 2371

arildno wrote:
...snip...
Det var meget oppklarende! Takk skal du ha! Utmerket hjelp!
by Matteslusken
06/03-2008 14:19
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Nullpunkter og trigonometri.
Replies: 4
Views: 2371


x-\frac{\pi}{3}=\frac{5\pi}{6}\to{x}=\frac{7\pi}{6}
hvor den siste er det samme som 210 grader.

Takker for utrolig raks og god hjelp. Utregningen som du viste til hadde jeg allerede på stell, så det er greit, men skader absolutt ikke å repetere det! :D

MEN, det jeg lurer på, og du får ...