Søket gav 495 treff
- 12/03-2025 13:47
- Forum: Høyskole og universitet
- Emne: Modulo - rekning
- Svar: 3
- Visninger: 17239
Re: Modulo - rekning
Hello ! I don't realize where the number ( 308 ) comes from. You should rather take into account the hint given in text ( 42 = 2 + 8 + 32 ). Maybe this rewriting will lead you onto a more fruitful trace: 10^42 = 10^2 * 10^8 * 10^32 Another hint: 10^2 = 100 " KONGRUENT " 39 ( MOD 61 ) 10^4...
- 11/03-2025 17:25
- Forum: Høyskole og universitet
- Emne: Modulo - rekning
- Svar: 3
- Visninger: 17239
Modulo - rekning
Rekn ut 10^42 mod 61
Hint: 42 = 2 + 8 + 32
Hint: 42 = 2 + 8 + 32
- 22/11-2024 21:27
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Eksamen R2 høst 2024
- Svar: 3
- Visninger: 49382
Re: Eksamen R2 høst 2024
OPPG.6 (del 2 ) Interessant problem , og gjerne ei litt hard nøtt å knekke for dei fleste kandidatane , vil eg tru. Har prøvd å vise formelen med to ulike integrasjonsmetodar: Utgangspunktet for begge metodane er sirkellikninga : ( x - a )^2 + y^2 = R^2 ( sirkel med sentrum i punktet S( a ,0 ) og r...
- 12/11-2024 18:02
- Forum: Høyskole og universitet
- Emne: fysikk hjelp
- Svar: 3
- Visninger: 40665
Re: fysikk hjelp
Hallo ! Oppgåva du presenterer rommar to ukjende: Farta ( v ) til bilen og akselerasjonen ( a ) til toget. Det betyr at vi treng to likningar for å løyse problemet. Verktøy : Bruke veglikninga for konstant fart ( s = v * t ) saman med veglikn. for konstant akselerasjon ( s = 0.5 * a * t^2 ) Løyste p...
- 23/10-2024 19:51
- Forum: Høyskole og universitet
- Emne: Finne buelengde
- Svar: 1
- Visninger: 61039
Re: Finne buelengde
Først må eg berre beklage at [ tex - editor ] streikar. Det gjer at framstillinga som følgjer blir unødig tungvint og krøkete. Verktøy: Bogelengda ( L ) til ein funksjonsgraf ( f ( x ) frå a til b ) er gitt ved ( * ) L = nedre grense a ( integral ( kvadratrot (1 + f'( x )^2 )) øvre grense b Gitt f( ...
- 16/07-2024 16:14
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Hvordan finne bunnpunkt uten derivasjon?
- Svar: 2
- Visninger: 34709
Re: Hvordan finne bunnpunkt uten derivasjon?
Alternativ løysing: Skrive funksjonsuttrykket på forma f( x ) = ( x - a ) ^{2} + b Hint: Bygge ut x ^{2} - leddet og x - leddet til eit fullstendig kvadrat. Delvis løysing: f( x ) = x ^{2} - 4x - 5 = [ x ^{2} - 4x + ( \frac{4}{2} ) ^{2} ] - ( \frac{4}{2} ) ^{2} - 5 = ............... ( ser du vegen ...
- 07/06-2024 15:47
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Eksamen R2 vår 2024
- Svar: 16
- Visninger: 88079
Re: Eksamen R2 vår 2024
Kandidatar som oppdagar denne " snarvegen " har openbart gjort seg fortent til bonuspoeng , eller kva meiner du som les dette innlegget ? Selv om det er riktig, er vel ikke mønsteret helt matematisk begrunnet? Hvis du ikke har kommet med et bevis på hvorfor Sn blir kvadratet til det n-te ...
- 01/06-2024 23:32
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Lurer på hvordan man løser denne oppgaven
- Svar: 2
- Visninger: 32510
Re: Lurer på hvordan man løser denne oppgaven
I en konkurranse er det om å gjøre å kaste en ball med masse 3,0 kg høyest, rett opp i luften. Når en av deltakerne kaster, fører hun ballen 0,75 meter opp før hun slipper den. I gjennomsnitt bruker hun en kraft på 100 N mens hun er i kontakt med ballen. Hvor høyt over det punktet der hendene henne...
- 31/05-2024 14:59
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Eksamen R2 vår 2024
- Svar: 16
- Visninger: 88079
Re: Eksamen K2 vår 2024
Noen som har et løsningsforslag til kjemi 2 eksamen? Kan du gjere vel å legge ut oppgavesettet ( UDIR har ein sperrefrist på minimum ei veke ) ? Takk for jobben ! Her er mykje interessant lesnad for ein pensjonert kjemilærar. Kan starte med OPPG. 1 ( fleirvalg oppgaven ). Her er min " fasit &q...
- 30/05-2024 09:10
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Eksamen R2 vår 2024
- Svar: 16
- Visninger: 88079
Re: Eksamen K2 vår 2024
Kan du gjere vel å legge ut oppgavesettet ( UDIR har ein sperrefrist på minimum ei veke ) ?
- 30/05-2024 00:16
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Eksamen R2 vår 2024
- Svar: 16
- Visninger: 88079
Re: Eksamen R2 vår 2024
Kommentar til OPPG. 5 a ( del 2 ) Finne eit eksplisitt uttrykk for S _{n} . Her har lektor Seland brukt polynomregresjon ( 4. grad ) for å kome fram til svaret, og det er sjølvsagt heilt greitt. I dette tilfellet kan vi også finne løysinga meir direkte utan å bruke digitale hjelpemiddel. Vi har at S...
- 28/05-2024 16:26
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: Eksamen S2 vår 2024
- Svar: 11
- Visninger: 52066
Re: Eksamen S2 vår 2024
Alternativ løysing OPPG. 5b ( del 2 ) from math import factorial as fact def bin(a , b): return (fact(a)//fact(b)//fact(a - b)) for i in range( -5 , 6 ): p = bin(15 + i,6)*bin(15 + i , 9)/bin(30 + 2*i , 15) print(15 + i, p) 0 0.13544891640866874 11 0.1489938080495356 12 0.15547179970386324 13 0.1588...
- 28/05-2024 00:33
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: annuitetslån
- Svar: 5
- Visninger: 38707
Re: annuitetslån
Punkt c: Korrekt noverdi ( etter 5 år ) av utvida lån: 2727233. 2 kr Finn antal ( x ) år med årleg innbetaling på 200000 kr: 200000 \cdot sum ( \frac{1}{1.055^{i}} , i , 1 , x ) = 2727233.2 \Rightarrow x = 25.8915 Svar : Med ny årleg innbetaling ( 200000 kr ) går det 26 år før det utvida lånet er ne...
- 27/05-2024 23:51
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: annuitetslån
- Svar: 5
- Visninger: 38707
Re: annuitetslån
Vedk. svar pkt. b: Nyttig verktøy: Brukar sum - funksjonen i CAS på alle delspørsmåla. Dette hjelpemiddlet forenklar reknearbeidet svært mykje ! Minner også om at vi brukar svaret på pkt. a ( 186373. 3824 kr ) for å kunne løyse pkt. b. Noverdi ( etter 5 år ) av utvida lån: 2500000 \cdot 1.055 ^{5} ...
- 27/05-2024 17:50
- Forum: Videregående skole: VG1, VG2 og VG3
- Emne: annuitetslån
- Svar: 5
- Visninger: 38707
Re: annuitetslån
Svar spm. b: 244993 kr
Svar spm.c: 31 år ( 30.5458 )
Stemmer dette med dine utrekningar ?
Svar spm.c: 31 år ( 30.5458 )
Stemmer dette med dine utrekningar ?