Search found 47 matches

by goobigofs
21/05-2018 23:23
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Ubestemt integral og delvis integrasjon
Replies: 2
Views: 1647

Re: Ubestemt integral og delvis integrasjon

u-substitusjon med u=x^2+1 er nok veien å gå :)

Aaah. Jeg var innom tanken på substitusjon, men på et for sent tidspunkt i utregningen. Ser nå som du sier det at (x^2+1) er "hintet" her:

\int 4x*(x^{2}+1)*e^{x^{2}+1}dx, u = (x^{2}+1) \Rightarrow \frac{du}{dx}=2x\Leftrightarrow du=2xdx

Videre ...
by goobigofs
21/05-2018 22:33
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Ubestemt integral og delvis integrasjon
Replies: 2
Views: 1647

Ubestemt integral og delvis integrasjon

Hei!

Jeg holder på å løse denne oppgaven:

\int 4x*(x^{2}+1)*e^{x^{2}+1}dx

Jeg får frem slik

\int (4x^{3}+4x)*e^{x^{2}+1}dx = (x^{4}+2x^{2})*e^{x^{2}+1}-\int (x^{4}+2x^{2}) * e^{x^{2}+1}*2xdx

Men jeg kommer ikke videre. Integralet på høyresiden av likhetstegnet gjør at jeg må gjøre en ny ...
by goobigofs
20/11-2017 23:07
Forum: Videregående skole: VG1, VG2 og VG3
Topic: 1T eksamen høst17
Replies: 63
Views: 27764

Re: 1T eksamen høst17

Når man skal regne gjennomsnittlig vekstfart til intervallet [-1,1], ender man opp med feil svar hvis man finner f´(-1) og f´(1) og regner ut gjennomsnittet av disse to stigningstallene? Hadde ikke formelen for denne oppgaven i hodet, så jeg gjorde bare det jeg synes ga mest mening.

Dessverre, ja ...
by goobigofs
14/11-2017 21:08
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Geometri: Hvilken lengde gir kun en trekant?
Replies: 3
Views: 1928

Re: Geometri: Hvilken lengde gir kun en trekant?

Straamann wrote:Kom igjen da dere! :D
Skjønner ikke oppgaven, kunne du lastet opp hele? Pluss A, B og C
by goobigofs
01/11-2017 19:04
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Tangering av sirkel og x-akse
Replies: 4
Views: 2297

Re: Tangering av sirkel og x-akse

Ja, dette har du helt rett i at er litt rart. Jeg fanget ikke den da jeg trodde du spurte om noe annet.
I løsningsforslaget som ligger ute på denne nettsiden står det derimot at y=r som burde stemme bedre.
http://matematikk.net/side/R1_2012_h%C3%B8st_L%C3%98SNING

Men så er spørsmålet: hvorfor har ...
by goobigofs
01/11-2017 10:56
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Tangering av sirkel og x-akse
Replies: 4
Views: 2297

Re: Tangering av sirkel og x-akse

Oppgaven spør om akkurat ett punkt. ABC formelen gir vanligvis to løsninger fordi du har $\pm$ roten av et eller annet.
Dersom roten derimot er 0 får du $\pm$ 0 som gjør at du bare har ett svar.

Se her (tilfeldig valgte tall):
$\frac{-3\pm \sqrt{9}}{2} \Rightarrow x=0 \vee x=-3$
$\frac{-3 \pm ...
by goobigofs
30/10-2017 11:10
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Tangering av sirkel og x-akse
Replies: 4
Views: 2297

Tangering av sirkel og x-akse

Heisann!

Jeg jobber med R1 eksamen høst 2012, hvor en av oppgavene på del 2 er slik:

Vi er gitt en sirkel x^{2}+2tx+y^{2}-4y+9=0

Oppgaven ber oss finne t slik at sirkelen har akkurat et punkt felles med x-aksen. LF går frem slik:

Tangering med x-aksen \Rightarrow y = 0

x^{2}+2tx+0^{2}-4*0+9 ...
by goobigofs
27/10-2017 12:06
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Løsning av ligning med hensyn
Replies: 8
Views: 5360

Re: Løsning av ligning med hensyn

mattemarkus wrote: Jeg tror nok du dessverre må finne deg i å se $\left (lg(\frac{x}{n}) \right)^2$ på eksamen. Allikevel, synes jeg forslaget ditt til en annen omskriving er god praksis, slik som andre også har kommentert! :D
Den er god :D Takk for svar!
by goobigofs
26/10-2017 22:35
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Løsning av ligning med hensyn
Replies: 8
Views: 5360

Re: Løsning av ligning med hensyn

Kan man da skrive (lg(\frac{x}{n}))^2 som lg^2(\frac{x}{n}) for å unngå forvirring, på lik linje med sin/cos/tan?

Personlig synes jeg dette er en god løsning!

Veldig enig med deg der, virker som at dette burde være standard praksis - er det det? Kan jeg forvente å se det på en eksamen, eller er ...
by goobigofs
26/10-2017 21:43
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Løsning av ligning med hensyn
Replies: 8
Views: 5360

Re: Løsning av ligning med hensyn



(lg(x)-2) * lg(\frac{x}{n})=lg(\frac{x}{n})^{2}

(lg(x)-2)=lg(\frac{x}{n})

Altså her forkorter jeg lg\frac{x}{n} mot hverandre, istedenfor å flytte 2-tallet ned etter logaritmeregler.
[...]
Jeg ser ingen feil i utregningen her, men klarer ikke helt å vri hodet mitt rundt forskjellen på de to ...
by goobigofs
26/10-2017 21:38
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Løsning av ligning med hensyn
Replies: 8
Views: 5360

Re: Løsning av ligning med hensyn


(lg(x)-2) * lg(\frac{x}{n})=2* lg(\frac{x}{n})

[...]
Bonusspørsmål: ligningen er av andre grad, vi har funnet kun én løsning. Fasiten sier at dersom x = n vil brøken = 1 og ligningen vil stemme. Altså løsning nr to. Dette er er veldig "kreativ" fremgangsmåte og vanskelig å se før man leser ...
by goobigofs
21/10-2017 18:47
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Ekstremalpunkt parameterframstilling
Replies: 0
Views: 1817

Ekstremalpunkt parameterframstilling

Heisann!

Sitter med en R1 eksamen fra vår 2013, og har et spørsmål angående et par kurver. Jeg Får oppgitt posisjonsvektoren r(t) = [lnt, t^{2}-4t] .

Oppgaven lyder slik: "Bestem fartsvektoren v(t) og bruk denne til å bestemme eventuelle topp- og bunnpunkter på grafen til r(t).

Jeg deriverer r(t ...
by goobigofs
17/10-2017 19:10
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Løsning av ligning med hensyn
Replies: 8
Views: 5360

Løsning av ligning med hensyn

Hei!

Jeg sitter og gjør R1 eksamener, hvor den siste oppgaven ber oss løse denne ligningen med hensyn på x.

n^{2} * (\frac{x}{n})^{lg(x)-2} = x^{2}

Jeg går frem slik for å løse den:

(\frac{x}{n})^{lg(x)-2}=\frac{x^{2}}{n^{2}}

lg(\frac{x}{n})^{lg(x)-2}=lg(\frac{x}{n})^{2}

(lg(x)-2) * lg ...
by goobigofs
24/09-2017 14:37
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Enheter i R1
Replies: 2
Views: 1592

Re: Enheter i R1

Hei!

Jeg har et forståelsesproblem med enheter i R1

Si at jeg har en kube med sidekanter på 10 km.

For å finne volum: (10km)^3 = 1000 km^3

Dette er riktig.

Derimot hvis jeg endrer litt på det og skriver 10km som 10^3m, blir ting annerledes: (10^3m)^3 = 10^9m^3 = 10^6km^3

Nå står jeg ...
by goobigofs
24/09-2017 13:23
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Enheter i R1
Replies: 2
Views: 1592

Enheter i R1

Hei!

Jeg har et forståelsesproblem med enheter i R1

Si at jeg har en kube med sidekanter på 10 km.

For å finne volum: (10km)^3 = 1000 km^3

Dette er riktig.

Derimot hvis jeg endrer litt på det og skriver 10km som 10^3m, blir ting annerledes: (10^3m)^3 = 10^9m^3 = 10^6km^3

Nå står jeg ...