Search found 17 matches

by Mathmeth
14/09-2016 15:23
Forum: Høyskole og universitet
Topic: bestemme parametere a og b
Replies: 1
Views: 1007

bestemme parametere a og b

Hei,

Vi har en funksjon som er h(x)= {ax+b , x<1 og {-x^2 , x=>1 (hvor -x^2 også er en del av h(x)).

Hvordan kan man vise at denne funksjonen er deriverbar for alle x ved å bestemme a og b? Det er noe med grenseverdier å gjøre, men klarer ikke å forstå det foreleseren har gått gjennom. :cry:
by Mathmeth
11/09-2016 17:47
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Hjelp med brøk oppgaver
Replies: 4
Views: 1614

Re: Hjelp med brøk oppgaver

Hei godt folk

Jeg trenger deres hjelp. Har noen oppgaver jeg sliter med å forstå. Finner svaret ved hjelp av kalkulator, men forstår ikke hvordan jeg skal regne det ut. Fint om noen kan gi meg en forklaring på hvordan man løser disse oppgavene.

Bilde av oppgaven: https://imgur.com/a/tlrnN

Tusen ...
by Mathmeth
30/08-2016 22:17
Forum: Høyskole og universitet
Topic: Kontinuerlig funksjon og halveringsmetode
Replies: 2
Views: 2250

Re: Kontinuerlig funksjon og halveringsmetode

a, b og c representerer x-verdiene, ikke funksjonsverdiene.

Det krever mer enn 3 iterasjoner for å finne nullpunktet, så at du får feil svar er ikke overraskende (min kode brukte 20 iterasjoner).

Litt påfyll angående metoden (Bisection method) finner du her


Etter å ha gått gjennom notatene til ...
by Mathmeth
30/08-2016 14:13
Forum: Høyskole og universitet
Topic: Kontinuerlig funksjon og halveringsmetode
Replies: 2
Views: 2250

Kontinuerlig funksjon og halveringsmetode

Gitt ligningen x^3=10 benytt halveringsmetode til å estimere løsningen til likningen, bruk endepunktet 2 og 2.5. Utfør 3 iterasjoner.

Regelen for halveringsmetode er at
1) c=\frac{a+b}{2}
2) f(c)=0 da har vi ett nullpunkt
f(c)\neq0
Hvis f(a)*f(c)>0 , erstatt a med c
ellers f(a)*f(c)<0 , erstatt ...
by Mathmeth
30/08-2016 11:37
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Mat
Replies: 5
Views: 1643

Re: Mat

Swee wrote:Rasjonale uttrykk.
Faktoriser og forkort hvis mulig:

1/3x-3 + x+3/x^2-1 + 1/x+1

Du kan skrive [tex]x^2-1 = (x-1)(x+1)[/tex] og [tex]3x-3=3(x-1)[/tex]

[tex]\frac{1}{3(x-1)}+\frac{x+3}{(x-1)(x+1)}+\frac{1}{x+1}[/tex] nå kan du se hva som er felles for alle nevnere :)
by Mathmeth
29/08-2016 13:28
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Faktorisering
Replies: 6
Views: 2402

Re: Faktorisering

Jeg fikk samme svar som deg, men i fasit så stod det x(x+4), så jeg ble så frustrert. Så har jeg bare skrevet av boka feil. Altså jeg har skrevet (x-2)^2-4 i stedet for (x+2)^2-4. Men uansett. Jeg tenker sånn: (x-2)^2 -4 = (x-2)^2 = andre kvadratsetning = a^2 -2ab + b^2 = x^2 -4x +4 = x^2 -4x +4 -4 ...
by Mathmeth
23/08-2016 18:51
Forum: Høyskole og universitet
Topic: Komplekse tall
Replies: 2
Views: 1433

Re: Komplekse tall

-5e^2 ikke \pi :wink: , alt annet ser bra ut

edit: ser du redigerte det bra :)

Oh sant det, surret litt når jeg redigerte det, hehe! Men takk for at du sjekket det :) Har ikke noe fasitsvar skjønner du, så tenkte at jeg kunne spørre her :-)

hvis vi skulle gå fra kartetisk form til polarform med ...
by Mathmeth
23/08-2016 17:33
Forum: Høyskole og universitet
Topic: Komplekse tall
Replies: 2
Views: 1433

Komplekse tall

Hei,

Har en oppgave hvor jeg har -3e^i*pi som jeg skal skrive på kartetisk form (eksakt verdi), lurer bare på om jeg har gjort det riktig

Gikk fram slik:
-3e^{i\pi}
r=-3,\theta=\pi, z=r(cos\theta +sin\theta )
z=-3(cos\pi+isin\pi)
z=-3(-1+0i)
z=3

Er det noen som kan bekrefte om det er ...
by Mathmeth
21/11-2014 21:27
Forum: Videregående skole: VG1, VG2 og VG3
Topic: 1T Privatisteksamen 24.11.10
Replies: 24
Views: 11245

Re: 1T Privatisteksamen 24.11.10

Hei!

Kan noen forklare meg hvorfor den gjennomsnittlige vekstfarten i 2b) blir null?
Jeg bruker formelen delta y / delta x og vil man ikke da få 3 i nevner? Siden delta x blir x2-x1 = 3-0 = 3

Jo, nettopp som du sier. Du bruker delta y/delta x. Som gjør at telleren blir 0, og nevneren blir 3 og ...
by Mathmeth
05/11-2014 03:16
Forum: Matematikk i andre fag
Topic: kjemi 2 eksamensoppgaver + fasit
Replies: 3
Views: 8716

Re: kjemi 2 eksamensoppgaver + fasit

Hei,

Du kan bruke denne linken; https://pgsf.udir.no/dokumentlager/EksamensOppgaver.aspx?proveType=EV til å laste ned ulike eksamensoppgaver, passordet for å laste ned når du trykker på kjemi 2 er "Eksempel" med stor E. Du kan også velge "Prøveperiode" fra 2008 til 2014 vår og høst ...
by Mathmeth
01/11-2014 20:09
Forum: Høyskole og universitet
Topic: Løs likning med hensyn på y
Replies: 4
Views: 2821

Re: Løs likning med hensyn på y

Oh my bad :shock: synes jeg så parentes rundt 1/2 :oops:
by Mathmeth
01/11-2014 20:03
Forum: Videregående skole: VG1, VG2 og VG3
Topic: brøkregning
Replies: 6
Views: 2207

Re: brøkregning

[tex]3+\frac{5}{12}[/tex]
[tex]=\frac{3}{1}+\frac{5}{12}[/tex]

Ganger [tex]\frac{3}{1}[/tex] med 12 og får fellesnevner.

[tex]=\frac{36+5}{12}[/tex]
[tex]=\frac{41}{12}[/tex]
Som også kan skrive som: [tex]\frac{41}{12}= 3\frac{5}{12}[/tex] , fordi når du ganger 3*12(nevner)= 36 og plusser på 5(som er teller) får du nemlig [tex]\frac{41}{12}[/tex]
by Mathmeth
01/11-2014 15:21
Forum: Videregående skole: VG1, VG2 og VG3
Topic: Siste oppgave med logaritmelikninger
Replies: 16
Views: 5015

Re: Siste oppgave med logaritmelikninger

[tex](lgx)^3-(lgx)^2-2lgx=0[/tex]
[tex]lgx((lgx)^2-lgx-2)=0[/tex]

Bruk andregradsformel for det som er inni parentesen, da får du 2 av svarene dine. Men vi har også lgx som vi tok utafor parentesen igjen.
Da blir det slik:
[tex]lgx=0[/tex]
[tex]10^{lgx}=10^{0}[/tex]
[tex]x=10^0=1[/tex]
by Mathmeth
01/11-2014 15:17
Forum: Matematikk i andre fag
Topic: Fysikk - Bevegelsesligninger
Replies: 2
Views: 3763

Re: Fysikk - Bevegelsesligninger

Jo, enig der! Brukte faktisk andregradsligningen for å sjekke om jeg fikk samme svar :) Tusen takk for at du fikk det bekreftet da! :)
by Mathmeth
01/11-2014 15:10
Forum: Høyskole og universitet
Topic: Løs likning med hensyn på y
Replies: 4
Views: 2821

Re: Løs likning med hensyn på y

[tex]x=y+\frac{1}{2}y[/tex]
[tex]x*2=y*2+\frac{1}{2}y *2[/tex]
[tex]2x=2y+y[/tex]
[tex]3y=2x[/tex]
[tex]y=\frac{2x}{3}[/tex]

Hvis ligningen din skal løses med hensyn på y, så blir dette svaret antar jeg :)