Search found 7 matches

by okisou
19/11-2012 23:17
Forum: Høyskole og universitet
Topic: Formler og påstander
Replies: 1
Views: 915

Formler og påstander

Hei, jeg lurte på om jeg kunne få litt hjelp med denne oppgaven:


Finn førsteordens formler som representerer følgende mengdeteoretiske påstander, og avgjør om de er gyldige eller ikke. Begrunn svaret ditt.

(a) A delmengde av B
(b) a (element) i (A ∩ (B ∪ C))


Det ville ha vært fint om jeg ...
by okisou
30/10-2012 16:28
Forum: Høyskole og universitet
Topic: Andre ordens inhomogen differenslikning
Replies: 4
Views: 1892

Andre ordens inhomogen differenslikning

Hei,
jeg har fått i oppgave å finne {x^h_{n}} og {x^s_{n}} til likningen:

$${x_{n + 1}}\;-\;\frac32x_n\;-\;{x_{n - 1}}\;=\;- \frac32n^2\;+\; \frac73\;,\;\;for\;n \ge 1$$

Problemet er at jeg bare er kjent med likninger på formen $${x_{n + 2}}\;+\;{bx_{n + 1}}\;+\;{cx_{n}}\;=\;f(n)$$ og er usikker ...
by okisou
28/10-2012 02:23
Forum: Høyskole og universitet
Topic: Induksjon
Replies: 6
Views: 1891

Tusen takk for svar! Nå forsto jeg oppgaven bedre. :D
by okisou
26/10-2012 20:40
Forum: Høyskole og universitet
Topic: Induksjon
Replies: 6
Views: 1891

Re: Induksjon

Lord X wrote: Stemmer, du må vise at dersom [tex]n^{3}-n[/tex] er delelig med 3, så er også [tex](n+1)^{3}-(n+1)[/tex] delelig med 3.

(i tillegg på du sjekke n=1, men det er trivielt her!)
Men hvordan får jeg sjekket det? Er det bare å sette inn random tall for n, eller..? c:
by okisou
26/10-2012 19:53
Forum: Høyskole og universitet
Topic: Induksjon
Replies: 6
Views: 1891

Induksjon

Hei,
Kan noen hjelpe meg litt med denne oppgaven?


Vis ved induksjon at følgende påstand er sann for alle naturlige tall n:

n^3 - n er delelig med 3


Jeg har forstått at jeg må starte med basissteget og erstatte n, men jeg vet ikke helt hvordan jeg skal fortsette etter det. Er det meningen at ...
by okisou
21/10-2012 16:14
Forum: Høyskole og universitet
Topic: Rekursiv funksjon
Replies: 1
Views: 1640

Rekursiv funksjon

Hei,
jeg forstår ikke helt hva oppgaven vil at jeg skal fram til. Kan noen hjelpe meg litt? Takk på forhånd!


Definer en rekursiv funksjon s fra mengden av utsagnslogiske formler til mengden av naturlige tall som er slik at hvis F er en utsagnslogisk formel, så er s(F) lik antall symboler i ...
by okisou
15/10-2012 19:50
Forum: Høyskole og universitet
Topic: Ekvivalensrelasjon og Ekvivalensklasse
Replies: 8
Views: 2469

Ekvivalensrelasjon og Ekvivalensklasse

Hei,
jeg trenger litt hjelp med å løse denne oppgaven. Har sittet med den ganske lenge nå, men kommer ingen veier. Kan noen vise meg hvordan jeg kan gå fram her?


La ~ være en ekvivalensrelasjon på de naturlige tallene, og la E være [0], det vil si, ekvivalensklassen til tallet 0.

a) Bevis at E ...