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We assume that the 4’th derivative of a function is a constant this allows us to write for any x: 

𝑑4𝑦

𝑑𝑥4
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎) 

Lets find the third derivative 

𝑑3𝑦

𝑑𝑥3
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎)𝑥 + 𝐶 

In order to find C we set x=a 

𝐶 =
𝑑3𝑦

𝑑𝑥3
(𝑎) −

𝑑4𝑦

𝑑𝑥4
(𝑎)𝑎 

So that 

𝑑3𝑦

𝑑𝑥3
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎)𝑥 +

𝑑3𝑦

𝑑𝑥3
(𝑎) −

𝑑4𝑦

𝑑𝑥4
(𝑎)𝑎 =

𝑑4𝑦

𝑑𝑥4
(𝑎)(𝑥 − 𝑎) +

𝑑3𝑦

𝑑𝑥3
(𝑎) 

Then we find the second derivative 

 

𝑑2𝑦

𝑑𝑥2
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑3𝑦

𝑑𝑥3
(𝑎)𝑥 + 𝐶 

Solve for C: 

𝑑2𝑦

𝑑𝑥2
(𝑎) =

𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2
(𝑎 − 𝑎)2 +

𝑑3𝑦

𝑑𝑥3
(𝑎)𝑎 + 𝐶 
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𝑑2𝑦

𝑑𝑥2
(𝑎) −

𝑑3𝑦

𝑑𝑥3
(𝑎)𝑎 = 𝐶 

 

𝑑2𝑦

𝑑𝑥2
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑3𝑦

𝑑𝑥3
(𝑎)𝑥 +

𝑑2𝑦

𝑑𝑥2
(𝑎) −

𝑑3𝑦

𝑑𝑥3
(𝑎)𝑎

=
𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑3𝑦

𝑑𝑥3
(𝑎)(𝑥 − 𝑎) +

𝑑2𝑦

𝑑𝑥2
(𝑎) 

Integrating to look for the first derivative 

 

𝑑𝑦

𝑑𝑥
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑2𝑦

𝑑𝑥2
(𝑎)𝑥 + 𝐶 

Again solve for C: 

𝑑𝑦

𝑑𝑥
(𝑎) =

𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3
(𝑎 − 𝑎)3 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2
(𝑎 − 𝑎)2 +

𝑑2𝑦

𝑑𝑥2
(𝑎)𝑎 + 𝐶 

 

𝑑𝑦

𝑑𝑥
(𝑎) =

𝑑2𝑦

𝑑𝑥2
(𝑎)𝑎 + 𝐶 

 

𝐶 =
𝑑𝑦

𝑑𝑥
(𝑎) −

𝑑2𝑦

𝑑𝑥2
(𝑎)𝑎 

𝑑𝑦

𝑑𝑥
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑2𝑦

𝑑𝑥2
(𝑎)𝑥 +

𝑑𝑦

𝑑𝑥
(𝑎) −

𝑑2𝑦

𝑑𝑥2
(𝑎)𝑎 

 

𝑑𝑦

𝑑𝑥
(𝑥) =

𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑2𝑦

𝑑𝑥2
(𝑎)(𝑥 − 𝑎) +

𝑑𝑦

𝑑𝑥
(𝑎) 

Then we try to obtain 𝑦(𝑥): 

𝑦(𝑥) =
𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3 × 4
(𝑥 − 𝑎)4 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 +

𝑑2𝑦

𝑑𝑥2
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑𝑦

𝑑𝑥
(𝑎)𝑥 + 𝐶 

Solve for C: 

𝑦(𝑎) =
𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3 × 4
(𝑎 − 𝑎)4 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2 × 3
(𝑎 − 𝑎)3 +

𝑑2𝑦

𝑑𝑥2
(𝑎)

1

2
(𝑎 − 𝑎)2 +

𝑑𝑦

𝑑𝑥
(𝑎)𝑎 + 𝐶 
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𝑦(𝑎) =
𝑑𝑦

𝑑𝑥
(𝑎)𝑎 + 𝐶 

 

𝐶 = 𝑦(𝑎) −
𝑑𝑦

𝑑𝑥
(𝑎)𝑎 

So that  

 

𝑦(𝑥) =
𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3 × 4
(𝑥 − 𝑎)4 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 +

𝑑2𝑦

𝑑𝑥2
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑𝑦

𝑑𝑥
(𝑎)𝑥

+ 𝑦(𝑎) −
𝑑𝑦

𝑑𝑥
(𝑎)𝑎 

 

𝑦(𝑥) =
𝑑4𝑦

𝑑𝑥4
(𝑎)

1

2 × 3 × 4
(𝑥 − 𝑎)4 +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 +

𝑑2𝑦

𝑑𝑥2
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑𝑦

𝑑𝑥
(𝑎)(𝑥 − 𝑎)

+ 𝑦(𝑎) 

 

For a general derivation we start with the assumption that the n’th derivative is a constant so that 

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑥) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎) 

We can obtain 

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑥) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)𝑥 + 𝐶 

Solve for C by letting x=a 

 

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)𝑎 + 𝐶 

 

𝐶 =
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎) −

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)𝑎 

 

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑥) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)(𝑥 − 𝑎) +

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎) 

And then 
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𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
(𝑥) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎)𝑥 + 𝐶 

Obtaining C: 

𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
(𝑎) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)

1

2
(𝑎 − 𝑎)2 +

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎)𝑎 + 𝐶 

 

𝐶 =
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
(𝑎) −

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎)𝑎 

𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
(𝑥) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎)𝑥 +

𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
(𝑎) −

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎)𝑎

=
𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
(𝑎)(𝑥 − 𝑎) +

𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
(𝑎) 

 

 

 

From the derivation above we see that  

 

 
 

𝐶𝑑𝑘𝑦

𝑑𝑥𝑘
(𝑥)

=
𝑑𝑘𝑦

𝑑𝑥𝑘
(𝑎) −

𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
(𝑎)𝑎 

We also see a general pattern that for every time we go up to a k’th derivative we always add 

 

𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
(𝑎)𝑥 

And that we from the k+1 derivative always have from C 

𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
(𝑎)𝑎 

So that we always can add 

𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
(𝑎)(𝑥 − 𝑎) 

This will for the k-1 derivative become 

𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
(𝑎)

1

2
(𝑥 − 𝑎)2 



[Type here] [Type here] [Type here] 

And for the k-2 derivative this will become 

𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 

 

Since this pattern is accumulating and we get a new  
𝑑𝑘𝑦

𝑑𝑥𝑘
(𝑎)(𝑥 − 𝑎) for every integration and keep 

them by integrating them once each time we go from 𝑘 to 𝑘 − 1 derivative we can if the n’th 

derivative is constant start with 

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑥) =

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎) 

And end up with 

 

 

𝑃𝑛(𝑥) = 𝑦(𝑥) =
𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)

1

2 × 3 × … × 𝑛
(𝑥 − 𝑎)𝑛 + ⋯ +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3

+
𝑑2𝑦

𝑑𝑥2
(𝑎)

1

2
(𝑥 − 𝑎)2 +

𝑑𝑦

𝑑𝑥
(𝑎)(𝑥 − 𝑎) + 𝑦(𝑎) 

 

 

Error Taylor polynomial 

 

A general taylor polynomial where 
𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑥) ≠ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and we can’t derive it the way we did above 

has the same formula as above 

 

𝑃(𝑥) =
𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)

1

2 × 3 × … × 𝑛
(𝑥 − 𝑎)𝑛 + ⋯ +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2 × 3
(𝑥 − 𝑎)3 +

𝑑2𝑦

𝑑𝑥2
(𝑎)

1

2
(𝑥 − 𝑎)2

+
𝑑𝑦

𝑑𝑥
(𝑎)(𝑥 − 𝑎) + 𝑦(𝑎) 

So for x=a the Taylor polynomial becomes 

𝑃(𝑎) = 𝑦(𝑎) 

So in a the difference between the Taylor polynomial and the function the taylor polynomial is 

approximating becomes 

𝑦(𝑎) − 𝑃(𝑎) = 𝑦(𝑎) − 𝑦(𝑎) = 0 
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The first derivative of the taylor polynomial 

𝑃′(𝑥) =
𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎)

1

2 × 3 × … × 𝑛
𝑛(𝑥 − 𝑎)𝑛−1 + ⋯ +

𝑑3𝑦

𝑑𝑥3
(𝑎)

1

2 × 3
3(𝑥 − 𝑎)3−1

+
𝑑2𝑦

𝑑𝑥2
(𝑎)

1

2
2(𝑥 − 𝑎) +

𝑑𝑦

𝑑𝑥
(𝑎) 

So we see that  

𝑦′(𝑎) − 𝑃′(𝑎) =
𝑑𝑦

𝑑𝑥
(𝑎) −

𝑑𝑦

𝑑𝑥
(𝑎) = 0 

We also observe that there is a general pattern that gives 

𝑑𝑘𝑦

𝑑𝑥𝑘
(𝑎) =

𝑑𝑘𝑃(𝑎)

𝑑𝑥𝑘
 

So that  

𝑑𝑘𝑦

𝑑𝑥𝑘
(𝑎) −

𝑑𝑘𝑃(𝑎)

𝑑𝑥𝑘
= 0 

All the way up until 

𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑎) −

𝑑𝑛𝑃(𝑎)

𝑑𝑥𝑛
= 0 

The error of the taylor polynomial is 

𝐸(𝑥) = 𝑦(𝑥) − 𝑃(𝑥) 

If we take the n+1 derivative of an n’th degree taylor polynomial it is 0 so that 

𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1
=

𝑑𝑛+1𝑦(𝑥)

𝑑𝑥𝑛+1
−

𝑑𝑛+1𝑃(𝑥)

𝑑𝑥𝑛+1
=

𝑑𝑛+1𝑦(𝑥)

𝑑𝑥𝑛+1
− 0 =

𝑑𝑛+1𝑦(𝑥)

𝑑𝑥𝑛+1
≤ 𝑀 

We choose M as the max value of 
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1  on the interval [𝑎, 𝑏] 

𝑑𝑛+1𝐸(𝑐)

𝑑𝑥𝑛+1
= 𝑀 

 

Where M is a constant. If we try to integrate this once we would obtain 

∫ |
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1
| 𝑑𝑥 ≤ ∫ 𝑀 𝑑𝑥 

Since |
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 | > 0 for all x and 
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1  can be below or above 0 for different x 

|∫
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1
𝑑𝑥| ≤ ∫ |

𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1
| 𝑑𝑥 
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With |∫
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 𝑑𝑥| we can obtain |
𝑑𝑛𝐸(𝑥)

𝑑𝑥𝑛 |.  

|∫
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1
𝑑𝑥| ≤ ∫ 𝑀 𝑑𝑥 

|
𝑑𝑛𝐸(𝑥)

𝑑𝑥𝑛
| ≤ 𝑀𝑥 + 𝐶 

In order to find the constant C we know that 
𝑑𝑛𝐸(𝑎)

𝑑𝑥𝑛 = 0 

|
𝑑𝑛𝐸(𝑎)

𝑑𝑥𝑛
| = 0 ≤ 𝑀𝑎 + 𝐶 

−𝑀𝑎 ≤ 𝐶 

We could have integrated  

∫ |
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1
| 𝑑𝑥 = ∫ 𝑀 𝑑𝑥 

Then we would have obtained that when x=a that this is 0 

 

Since we always have that |∫
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 𝑑𝑥| ≤ ∫ |
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 | 𝑑𝑥 we also have that |∫
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 𝑑𝑥| is 0 

when x=a. This is illustrated by this graph 
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You could say that |
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 | × 1 = 𝑀 is always larger then 
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 × 1. We are interested in 
𝑑𝑛𝐸(𝑥)

𝑑𝑥𝑛  

which is the integral. We know that 
𝑑𝑛𝐸(𝑥)

𝑑𝑥𝑛  is 0 in x=a. We can use this and by using M=
𝑑𝑛+1𝐸(𝑐)

𝑑𝑥𝑛+1  we 

reassure that we get a larger value for the integral |∫
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 𝑑𝑥| ≤ ∫ 𝑀 𝑑𝑥 since M is based on a 

function |
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 | ≥
𝑑𝑛+1𝐸(𝑥)

𝑑𝑥𝑛+1 . 

 

−𝑀𝑎 = 𝐶 

 

|
𝑑𝑛𝐸(𝑥)

𝑑𝑥𝑛
| ≤ 𝑀𝑥 − 𝑀𝑎 = 𝑀(𝑥 − 𝑎) 

By doing the same steps as above we obtain  

|
𝑑𝑛−1𝐸(𝑥)

𝑑𝑥𝑛
| ≤ 𝑀

1

2
(𝑥 − 𝑎)2 + 𝐶 



[Type here] [Type here] [Type here] 

0 ≤ 𝑀
1

2
(𝑎 − 𝑎)2 + 𝐶      0 ≤ 𝐶     

Again we solve for C by using the info at x=a which we can use since the same quantification of M as 

above 

𝐶 = 0 

|
𝑑𝑛−1𝐸(𝑥)

𝑑𝑥𝑛
| ≤ 𝑀

1

2
(𝑥 − 𝑎)2 

We repeat the same process until we obtain  

|𝐸(𝑥)| ≤ 𝑀
1

(𝑛 + 1)!
(𝑥 − 𝑎)2+𝑛−1 = 𝑀

1

(𝑛 + 1)!
(𝑥 − 𝑎)1+𝑛 =

𝑑𝑛+1𝐸(𝑐)

𝑑𝑥𝑛+1

1

(𝑛 + 1)!
(𝑥 − 𝑎)1+𝑛 

 

 

 

 


