DEFINITIONS Let f be a function with derivatives of all orders throughout

some interval containing « as an interior point. Then the Taylor series generated
by fatx = ais

‘26 -—/\—'—-(\ —a) = fla) + [la)(x — a) + j)('(z) (x — a)?
(n)
i f ”f") (x — a)" +

We assume that the 4’th derivative of a function is a constant this allows us to write for any x:

d*y d*y
W x) = W(a)
Lets find the third derivative
d*y
dx3 ( )= (a)x +C
In order to find C we set x=a
- @~ (@a
So that
d3y d*y d3y d*y d*y d3y
m(x) ()x+d > (@) — W(a)a—w(a)(x—a)+ﬁ(a)

Then we find the second derivative

3

d2y d4 d3y
x) = (a) (x —a)? +-3 (a)x +C

dx?
Solve for C:
3

dty d
dxz()_ (a) La—a2+ x};(a)a+C
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d?y

d3y
W(a) —ﬁ(a)a =C

3 2

d* 1 d d
() =d—3j(a)—(x—a)2 +—§(a>x+ .

2 3
4y —(a)—d—y<a)a
d

dx?
4 1 d?y
(a) (x —a)? + (a) G-—a)+-3 (a)

Integrating to look for the first derivative

3 2
D ) = T2 @) -0+ S @2 - + S @t €
Again solve for C:
4 3 2
(@ = @ gz -0+ T2 @@ + T2 @atC
2
—()— (a)a+C
=2 -2 @a
d* a3y 1 d?y dy d?y
) = @ gz - 0+ TE @3 (0 + T @+ P (@)~ T @a
3
D ) = 22 (@) e (- @ + 2 @ - 0P + L @ - )+ 2 (@)

Then we try to obtain y(x):

4 2
V) = 22 () e (6= )+ 2 (@) e~ @) 4 S (@2 = 0+ a4 C
Solve for C:

4 2

(a—a)4+d (a) (a—a)3+d (a) (a—a)2+d—(a)a+C

_dy
Y(a)_dx4(a)2x3x4
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dy
y@=—-(@a+C

C= a —a)a
y( ) ! ( )
So that

4

d
y() =22 (@ -0+ 22 @

2X3X4
ry@-2@
y a dx a)a

4

d
y() = =% (@) (- )+

-t + 2 @
2x3x4 Y T\ Y3

+y(a)

3 (= )3+d

2 dy
(a) (x —a)? + — (a)x

2
@5~ + L @~ a)

For a general derivation we start with the assumption that the n’th derivative is a constant so that

d™y d™y
W x) = W (a)

We can obtain

dn—l dn
= 1( )——(a)x+C

Solve for C by letting x=a

dn—l dn
e 1( )——(a)a+C

dn—l
d Jyn-1

dn—ly n n-1

d™y d
(x) = (a) (x—a)+

dxn—1

And then
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> (@ )——(a)a

=1 @
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dn n—1

() = T2 @2~ + T @+
Obtaining C:
dn— n—l
_ 24
@ =2 @5+ T @aC
dn— Tl—
dn— 1 Tl—ly n—zy n-1
=1 (a)—(x—a>2+d = @3+ = (@)~ = (@a
dn n— 1 n— 2
=—(a) (x—a)2 = 1(a)(x a) + I nz(a)
From the derivation above we see that
dk dk+1y
Caty ) = gk (D~ g (D

dxk

We also see a general pattern that for every time we go up to a k’th derivative we always add

dk+1
it (O

And that we from the k+1 derivative always have from C

dk+1y
et (e

So that we always can add

dk+1
pREE (@(x—a)

This will for the k-1 derivative become

dk+1y
e (@5 (= @)?
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And for the k-2 derivative this will become

Y = = ay?
dxk+1 2%3

. . . , dk . ,
Since this pattern is accumulating and we get a new d—xi (a)(x — a) for every integration and keep

them by integrating them once each time we go from k to k — 1 derivative we can if the n’th
derivative is constant start with

d"y d"y
ﬁ(x) = W(a)
And end up with
d™y 1 . d3y 1 5
P =y() =@ 55— -+t 3z@ Sk -a)

d?y

+ —_
dx?

1 dy
(@5 -0 + (@~ ) +y(@

Error Taylor polynomial

. ar , L .
A general taylor polynomial where # (x) # constant and we can’t derive it the way we did above

has the same formula as above

dmy 1 n d3y
#e) _dx”(a)2x3>< ...xn(x_a) +“'+W(a)

1
2X3

d’y 1
— )3 (v — )2
(- + 5 (@5 -
+ 2 +
— @~ a)+y(a
So for x=a the Taylor polynomial becomes

P(a) = y(a)

So in a the difference between the Taylor polynomial and the function the taylor polynomial is
approximating becomes

y(a) —P(a) =y(a) —y(a) =0
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The first derivative of the taylor polynomial

n

d"y 1

P = n @D axoxn 7330 — a)*

nx—a)* 1 +- + (a)

+ Y 2 + 4y
dx2 (a) 2 (x—a) dx (a)
So we see that
) ) dy dy
y'(@~P'@) == (@~=(@=0

We also observe that there is a general pattern that gives

d*y d*P(a)
axk (D =
So that
d*y d*P(a)
(@)~ =
dx dx

All the way up until

The error of the taylor polynomial is

E(x) = y(x) — P(x)

If we take the n+1 derivative of an n’th degree taylor polynomial it is O so that

dn+1E(x) dn+1y(x) dn+1P(x) dn+1y(x) dn+1y(x)
dxn+1 = dx™+1  xntl = dxn+t = dxn+1 =
d™"1E(x) .
We choose M as the max value of on the interval [a, b]
dxnti1
dn+1E(C)
Tdxtt

Where M is a constant. If we try to integrate this once we would obtain

d"+1E(x)
f W dx < JMdX
n+1 n+1
Since ddxi(lx) > 0 forall x and & nEJr(f) can be below or above 0 for different x
dn+1E(x) dn+1E(x)
f dxn+1 Sf dxn+1 dx
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d"+1E(x)
dxnti1

d™E(x)
dxn

With |f dx| we can obtain

dn+1E(x)
dxn+1

fde

d"E
x) SMx+C

dxn

d E(a) -0

In order to find the constant C we know that

d"E(a)
dxn

=0<Ma+C

—Ma <C

We could have integrated
dn+1E(X)
Cdxntt

| x= | Max

Then we would have obtained that when x=a that this is 0

dn+1E(x)
dxnti

dn+1E(x)
dxnti1

dx| <[
when x=a. This is illustrated by this graph

Since we always have that |f
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dx we also have that |f

dx|isO
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dn—lE(:::.}

dn+1E(x)

d"1E(x . . d"E(x
_— (x) X 1. We are interested in *x)
dxn+1

dxnti dxmn
d‘n+1E(C)
dxnt1

You could say that X 1 = M is always larger then

d™E(x)
dxm

which is the integral. We know that is 0 in x=a. We can use this and by using M=

. d"tE : .
reassure that we get a larger value for the integral |f dxn+(1x) dx| < [ M dx since M is based on a
. d™1E(x) d™1E(x)
function |——- 2 ———
—Ma=C

d™E (x)
dxm

< Mx —Ma=M(x—a)

By doing the same steps as above we obtain

d"1E(x)

1
< — — 2
T _Mz(x a) +C
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1
OSME(a—a)2+C 0<cC

Again we solve for C by using the info at x=a which we can use since the same quantification of M as
above

c=0

d"1E(x)

<Mi(x-a)?
dxn - Ex a

We repeat the same process until we obtain

d""E(c) 1

1
_ 24+n—-1 _ _ 1+n _
(x—a) M (x=a) dx™1 (n+1)!

E()l < M ~ U+ D!

(x _ a)1+n

(n+1)!
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