liten "Abel oppgave"

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

liten "Abel oppgave"

Innlegg Janhaa » 14/11-2017 17:33

Gitt:

[tex]f(x)+f(x+1)=2x+3[/tex]
og
[tex]f(2)=3[/tex]
hva er:
[tex]f(99)[/tex]?
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7346
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: liten "Abel oppgave"

Innlegg alund » 14/11-2017 18:16

Min løsning: utregning, antagelse, bevis og til slutt anvendelse.
Flytter om til [tex]f(x+1)=2x+3-f(x)[/tex], og regner ut noen verdier for [tex]f[/tex]:
[tex]f(2+1)=f(3)=2\cdot 2+3-3=4[/tex]
[tex]f(4)=5,\: f(5)=6,\: f(6)=7[/tex].
Ser ut som [tex]f(x)=x+1[/tex]. Setter det inn i venstresiden for å få høyresiden:
[tex]f(x)+f(x+1)=x+1+x+1+1=2x+3[/tex].
Dermed er [tex]f(99)=100[/tex].
alund online
Pytagoras
Pytagoras
Innlegg: 12
Registrert: 31/03-2017 20:40

Re: liten "Abel oppgave"

Innlegg Markus » 14/11-2017 18:52

Jeg løste den også selv først som alund, men lurer på om følgende også kan være gyldig, særlig antakelsen om at $f(x)$ er lineær:

Ut av opplysningene kan vi anta at $f(x)$ er en lineær funksjon, altså på formen $ax + b$
Da vil $f(0)$ gi oss konstantleddet; $f(0) = 3 - f(1)$, og $f(1)=2+3-f(2)=2$, så $f(0)=3-2=1$

Og siden funksjonen er lineær er det null problem å finne stigningstallet: $\frac{y_{x=2}-y_{x=0}}{\Delta x} = \frac{3-1}{2} = 1$

Da må $f(x) = x +1$, og av dette ser vi at $f(99) = 100$
Sist endret av Markus den 14/11-2017 23:39, endret 1 gang
Markus offline
Cauchy
Cauchy
Innlegg: 212
Registrert: 20/09-2016 12:48

Re: liten "Abel oppgave"

Innlegg Janhaa » 14/11-2017 22:53

begge ser bra ut :=)
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7346
Registrert: 21/08-2006 02:46
Bosted: Grenland

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 8 gjester