vgs 2

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

vgs 2

Innlegg Janhaa » 10/08-2017 19:32

finn ett eksakt uttrykk, uten Wolfram etc, for:

[tex]\large \frac{1}{\sin(10^o)}\,-\,\frac{\sqrt{3}}{\cos(10^o)}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7260
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: vgs 2

Innlegg Solar Plexsus » 26/08-2017 17:46

La

$(1) \;\; x = \frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}}$

som gir

$(2) \;\; x = \frac{\cos 10^{\circ} - \sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ}}$.

Vi trenger følgende formler for å beregne $x$:

$(3) \;\; \sin 2u = 2 \sin u \cdot \cos u$,

$(4) \;\; \cos(u + v) = \cos u \cdot \cos v - \sin u \cdot \sin v$,

$(5) \;\; \cos(90^{\circ} - u) = \sin u$.

Ved å sette $u = 10^{\circ}$ i formel (3), får vi at $x$ kan uttrykkes som

$x = 4\frac{\frac{1}{2} \cdot \cos 10^{\circ} - \frac{\sqrt{3}}{2} \cdot \sin 10^{\circ}}{\sin 20^{\circ}}$

$= 4 \: \frac{\cos 60^{\circ} \cdot \cos 10^{\circ} - \sin 60^{\circ} \cdot \sin 10^{\circ}}{\sin 20^{\circ}}$

$= 4 \: \frac{\cos(60^{\circ} + 10^{\circ})}{\sin 20^{\circ}}$ (setter $(u,v) = (60^{\circ},10^{\circ})$ i formel (4))

$= 4 \: \frac{\cos(90^{\circ} - 20^{\circ})}{\sin 20^{\circ}}$

$= 4 \: \frac{\sin 20^{\circ}}{\sin 20^{\circ}}$ (setter $u = 20^{\circ}$ i formel (5))

Med andre ord er

$\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$.
Solar Plexsus offline
Over-Guru
Over-Guru
Innlegg: 1637
Registrert: 03/10-2005 11:09

Re: vgs 2

Innlegg Janhaa » 27/08-2017 14:15

Solar Plexsus skrev:La
$(1) \;\; x = \frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}}$
som gir
$(2) \;\; x = \frac{\cos 10^{\circ} - \sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ}}$.
Vi trenger følgende formler for å beregne $x$:
$(3) \;\; \sin 2u = 2 \sin u \cdot \cos u$,
$(4) \;\; \cos(u + v) = \cos u \cdot \cos v - \sin u \cdot \sin v$,
$(5) \;\; \cos(90^{\circ} - u) = \sin u$.
Ved å sette $u = 10^{\circ}$ i formel (3), får vi at $x$ kan uttrykkes som
$x = 4\frac{\frac{1}{2} \cdot \cos 10^{\circ} - \frac{\sqrt{3}}{2} \cdot \sin 10^{\circ}}{\sin 20^{\circ}}$
$= 4 \: \frac{\cos 60^{\circ} \cdot \cos 10^{\circ} - \sin 60^{\circ} \cdot \sin 10^{\circ}}{\sin 20^{\circ}}$
$= 4 \: \frac{\cos(60^{\circ} + 10^{\circ})}{\sin 20^{\circ}}$ (setter $(u,v) = (60^{\circ},10^{\circ})$ i formel (4))
$= 4 \: \frac{\cos(90^{\circ} - 20^{\circ})}{\sin 20^{\circ}}$
$= 4 \: \frac{\sin 20^{\circ}}{\sin 20^{\circ}}$ (setter $u = 20^{\circ}$ i formel (5))
Med andre ord er
$\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$.


fin løsning
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7260
Registrert: 21/08-2006 02:46
Bosted: Grenland

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 6 gjester