ocj96

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

ocj96

Innlegg Janhaa » 10/08-2017 18:37

Jeg skjønner fremgangsmåten, men hvordan kommer man frem til dette: sin^2(x) = 0.5(1-cos(2x)) eller cos^2(x)=0.5(1+cos(2x))

sjekk disse to likningene:

[tex]\cos(2x)=\cos^2(x)-\sin^2(x)[/tex]
og
[tex]\sin^2(x)+\cos^2(x)=1[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7260
Registrert: 21/08-2006 02:46
Bosted: Grenland

Re: ocj96

Innlegg ocj96 » 10/08-2017 19:39

Tror jeg trenger noe mer en det. Har prøvd å sette det ene inn i det andre med tanke på å lage et uttrykk for sin^2(x) og cos^2(x) :(
ocj96 offline
Pytagoras
Pytagoras
Innlegg: 14
Registrert: 09/08-2017 18:07

Re: ocj96

Innlegg Janhaa » 10/08-2017 20:01

ocj96 skrev:Tror jeg trenger noe mer en det. Har prøvd å sette det ene inn i det andre med tanke på å lage et uttrykk for sin^2(x) og cos^2(x) :(

gitt
[tex]\cos(2x)=\cos^2(x)-\sin^2(x)[/tex]
og
[tex]\sin^2(x)+\cos^2(x)=1[/tex]
dvs
[tex]\cos(2x)=\cos^2(x)-(1-\cos^2(x))=2\cos^2(x)-1[/tex]

da klarer du den...
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Janhaa offline
Boltzmann
Boltzmann
Brukerens avatar
Innlegg: 7260
Registrert: 21/08-2006 02:46
Bosted: Grenland

Hvem er i forumet

Brukere som leser i dette forumet: Bing [Bot] og 21 gjester