Side 1 av 1

Integrasjon ved substitusjon

Lagt inn: 22/10-2014 17:48
av Gjest
Lurer på om jeg er på riktig vei her..


Skal integrere dette stykket:

Cos x/4+(sinx)^2

Har satt u = sin x og u'=cos x

Får da:
Cos x/4+u^2 ganget med du/cos x

Da kan jeg jo forkorte cos x, men føler dette blir feil? Sitter da igjen med 1/4+u^2 som jeg ikke kommer meg videre med.

Re: Integrasjon ved substitusjon

Lagt inn: 22/10-2014 18:04
av Lektorn
Hvis jeg skjønner stykket ditt rett så hjelper ikke substitusjonen her, fordi du blir stående igjen med cos(x) i nevneren på ledd nummer to. Da har du et integral med to variabler, x og u, noe som blir vanskelig.

Prøv heller om du klarer å omforme uttrykkene vha noen trigonometriske sammenhenger.

Re: Integrasjon ved substitusjon

Lagt inn: 22/10-2014 18:08
av zell
[tex]\int\left(\frac{\cos{x}}{4}+\sin^2{x}\right)\text{d}x[/tex]

Ser integralet ditt slik ut? Første ledd kan du jo integrere rett frem. Andre ledd blir noe mer kronglete.

Re: Integrasjon ved substitusjon

Lagt inn: 22/10-2014 18:13
av Gjest
zell skrev:[tex]\int\left(\frac{\cos{x}}{4}+\sin^2{x}\right)\text{d}x[/tex]

Ser integralet ditt slik ut? Første ledd kan du jo integrere rett frem. Andre ledd blir noe mer kronglete.
Cos x over brøkstrøken og 4 + sinx^2 under.

Re: Integrasjon ved substitusjon

Lagt inn: 22/10-2014 18:17
av Gjest
Sånn ser integralet ut:

[quote="zell"][tex]\int\left(\frac{\cos{x}}{4+sin^2{x}}\right)\text{d}x[/tex]

Re: Integrasjon ved substitusjon

Lagt inn: 22/10-2014 18:45
av zell
[tex]u = \sin{x} \ \Rightarrow \ \text{d}u = \cos{x}\text{d}x[/tex]

Innsatt:

[tex]\int\frac{\cos{x}}{4+\sin^2{x}}\text{d}x = \int\frac{\text{d}u}{4+u^2}[/tex]

[tex]u = 2\tan{z} \ \Rightarrow \ \text{d}u = 2(1+\tan^2{z})\text{d}z[/tex]

[tex]\int\frac{\text{d}u}{4+u^2} = \int\frac{2(1+\tan^2{z})}{4+4\tan^2{z}}\text{d}z = \frac{1}{2}\int\text{d}z = \frac{1}{2}z + C = \frac{1}{2}\arctan{\left(\frac{u}{2}\right)} + C = \frac{1}{2}\arctan{\left(\frac{\sin{x}}{2}\right)} + C[/tex]

Re: Integrasjon ved substitusjon

Lagt inn: 22/10-2014 22:46
av Gjest
zell skrev:[tex]u = \sin{x} \ \Rightarrow \ \text{d}u = \cos{x}\text{d}x[/tex]

Innsatt:

[tex]\int\frac{\cos{x}}{4+\sin^2{x}}\text{d}x = \int\frac{\text{d}u}{4+u^2}[/tex]

[tex]u = 2\tan{z} \ \Rightarrow \ \text{d}u = 2(1+\tan^2{z})\text{d}z[/tex]

[tex]\int\frac{\text{d}u}{4+u^2} = \int\frac{2(1+\tan^2{z})}{4+4\tan^2{z}}\text{d}z = \frac{1}{2}\int\text{d}z = \frac{1}{2}z + C = \frac{1}{2}\arctan{\left(\frac{u}{2}\right)} + C = \frac{1}{2}\arctan{\left(\frac{\sin{x}}{2}\right)} + C[/tex]

Jeg kom hit selv: [tex]\int\frac{\cos{x}}{4+\sin^2{x}}\text{d}x = \int\frac{\text{d}u}{4+u^2}[/tex]

Men hva gjør du videre?

Hvordan kommer du frem til at u = 2 tan z?

Re: Integrasjon ved substitusjon

Lagt inn: 22/10-2014 23:32
av Nebuchadnezzar
Ønsker at nevner skal bli $1+u^2$ siden $(\arctan x)' = 1/(1+x^2)$ så $\int \frac{\mathrm{d}x}{1+x^2} = \arctan x + C$

Re: Integrasjon ved substitusjon

Lagt inn: 23/10-2014 12:17
av Gjest
Nebuchadnezzar skrev:Ønsker at nevner skal bli $1+u^2$ siden $(\arctan x)' = 1/(1+x^2)$ så $\int \frac{\mathrm{d}x}{1+x^2} = \arctan x + C$

[tex]\int\frac{\cos{x}}{4+\sin^2{x}}\text{d}x = \int\frac{\text{d}u}{4+u^2}[/tex]

[tex]u = 2\tan{z} \ \Rightarrow \ \text{d}u = 2(1+\tan^2{z})\text{d}z[/tex]

Skjønner ikke hva man gjør her. (Jeg skjønner at det første man gjør i stykket er å sette u = sinx for å kunne forkorte cosx)

Tar man enda et variabelbytte ?

Re: Integrasjon ved substitusjon

Lagt inn: 23/10-2014 12:37
av zell
Det kalles for trigonometrisk substitusjon.

Re: Integrasjon ved substitusjon

Lagt inn: 23/10-2014 14:32
av Gjest
Nebuchadnezzar skrev:Ønsker at nevner skal bli $1+u^2$ siden $(\arctan x)' = 1/(1+x^2)$ så $\int \frac{\mathrm{d}x}{1+x^2} = \arctan x + C$
Ja, så for å få nevner til å bli 1+x^2 må jeg jeg dele alle leddene i nevner med 4, og ganger med 4. Da kan jeg sette du/4 utenfor integralet og løse integralet.

Tusen takk for hjelpen! Svaret stemmer selvfølgelig med fasiten, men ville "greie" det selv. :D

Re: Integrasjon ved substitusjon

Lagt inn: 23/10-2014 14:40
av zell
Skal du bruke at du vet at den deriverte av [tex]\arctan{x} = \frac{1}{1+x^2}[/tex], for så å bruke fundamentalteoremet til å løse integralet bør du gjøre enda en substitusjon. Vi starter med:

[tex]\int\frac{\text{d}u}{4+u^2}[/tex]

[tex]u = 2z \ \Rightarrow \ \text{d}u = 2\text{d}z[/tex]

[tex]\int\frac{2\text{d}z}{4+4z^2} = \frac{1}{2}\int\frac{\text{d}z}{1+z^2} = \frac{1}{2}\arctan{z} + C[/tex]

Re: Integrasjon ved substitusjon

Lagt inn: 23/10-2014 19:29
av Gjest
zell skrev:Skal du bruke at du vet at den deriverte av [tex]\arctan{x} = \frac{1}{1+x^2}[/tex], for så å bruke fundamentalteoremet til å løse integralet bør du gjøre enda en substitusjon. Vi starter med:

[tex]\int\frac{\text{d}u}{4+u^2}[/tex]

[tex]u = 2z \ \Rightarrow \ \text{d}u = 2\text{d}z[/tex]

[tex]\int\frac{2\text{d}z}{4+4z^2} = \frac{1}{2}\int\frac{\text{d}z}{1+z^2} = \frac{1}{2}\arctan{z} + C[/tex]
Skjønte det nå. Takk :D