Parametrisering motsatt vei?

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Svar
Johan Nes
Fermat
Fermat
Innlegg: 705
Registrert: 23/01-2012 12:56

Hei,

Er det en generell formell eller metodikk man kan bruke for å finne parametrisering av en kurve motsatt vei?

Jeg har fått til dette ved veldig enkle uttrykk (omformer den opprinnelige parametriseringen), men sliter med litt vanskeligere.

Eksempel:

Bestem en parameterframstilling for kurven C når C er den rette linja fra punktet (1,2) til punktet (3,5).

Løsning:

Fant denne ved å regne ut stigningstall og så sette inn i likningen for en linje y = ax+b. Man kan vel også bruke ettpunktsformelen direkte.

Kom da til likning for linjen y = 1,5x + 0,5

Som parametrisert blir

x(t)=t

y(t)=1,5t + 0,5

1<t<3.


Oppgave 2:


Parametriser den samme kurven, men slik at den gjennomløpes motsatt vei.

Altså at man starter i (3,5) og går mot (1,2) ved økende t-verdier.

Hvordan går man fram her?

Tar man utgangspunkt i parameterframstillingen man alt fant eller starter man fra scratch? Har en fasit, men forstår ikke helt hva som skjer. Ser ut som han bruker ettpunktsformelen, men er ikke helt med på notene.

På forhånd takk! :)
Aleks855
Rasch
Rasch
Innlegg: 6868
Registrert: 19/03-2011 15:19
Sted: Trondheim
Kontakt:

La $x_r(t) = x(a+b-t)$ og $y_r(t) = y(a+b-t)$

Der $a=1, \ b=3$

Legg merke til at for $t=1$ så vil disse funksjonene starte i sluttpunktet til din første parametrisering, og når $t$ øker, så vil de gå nedover mot startpunktet.

Vi har essensielt bare bytta ut $t$ med $a+b-t$ for å oppnå dette.
Bilde
Johan Nes
Fermat
Fermat
Innlegg: 705
Registrert: 23/01-2012 12:56

Hjertelig, Aleks! :)

Er på farten nå, så får ikke regnet på det før i kveld.

Er dette en generell formel eller fremgangsmåte man kan bruke for hver slik oppgave?

Er a og b verdiene x-verdier for henholdsvis sluttpunkt og startpunkt?
Aleks855
Rasch
Rasch
Innlegg: 6868
Registrert: 19/03-2011 15:19
Sted: Trondheim
Kontakt:

Ja, dette er en generell formel for reversering av parameterfremstillinga.

Og ja, beklager. $a, b$ er henholdsvis $t$-verdiene i start- og sluttpunktet.
Bilde
Johan Nes
Fermat
Fermat
Innlegg: 705
Registrert: 23/01-2012 12:56

Ok. Takker! :)

Skal få regnet over i morgen tidlig. Rapporterer tilbake.
Johan Nes
Fermat
Fermat
Innlegg: 705
Registrert: 23/01-2012 12:56

Kom dessverre ikke i mål. Lyst å vise?

Legger også ved bilde av fasit. Ser ut som ettpunktsformelen, men skjønner ikke helt.

Generelt spørsmål:

Er det vanlige i slike oppgaver å først finne fremstillingen "rett" vei og så snu den etterpå? Eller kan man finne en som går "feil" vei direkte?

Takk igjen. :)
Johan Nes
Fermat
Fermat
Innlegg: 705
Registrert: 23/01-2012 12:56

Fasit.
Vedlegg
image.jpeg
image.jpeg (1.38 MiB) Vist 3557 ganger
Aleks855
Rasch
Rasch
Innlegg: 6868
Registrert: 19/03-2011 15:19
Sted: Trondheim
Kontakt:

Bilde

Det ser ut til å funke. Start- og sluttpunktet er byttet om.
Er det vanlige i slike oppgaver å først finne fremstillingen "rett" vei og så snu den etterpå?
Nei, du kunne jo godt bare funnet parameterfremstillinga for linja som går fra (3,5) til (1,2) med en gang. Det er jo samme prosess. Men har du først funnet den motsatte, så er vel dette lettere.
Bilde
Gjest

Takker, Aleks. :D

Jeg er delvis med. Skjønte vel ikke helt hvordan du fikk [tex]x(4-t)=4-t[/tex]

Skjønner ellers du eller noen andre hva fasit som jeg la frem gjorde? Har forsøkt å komme i kontakt med læreren min uten hell, men treffer han i løpet av uken om ikke.

Har en lignende oppgave for en vektorfunksjon i tre variabler. Der sier fasit bare "Bruk fremgangsmåten fra a)".

Men mulig jeg kan bruk din generelle formel for også denne?

Johan Nes
Gjest

Glemte å logge inn, så kan ikke redigere. :D

Men vedr. mitt første spørsmål, så er det vel kanskje fordi du setter x = 1?
Aleks855
Rasch
Rasch
Innlegg: 6868
Registrert: 19/03-2011 15:19
Sted: Trondheim
Kontakt:

Gjest skrev:Takker, Aleks. :D

Jeg er delvis med. Skjønte vel ikke helt hvordan du fikk [tex]x(4-t)=4-t[/tex]
Dersom $x(t) = t$ så vil $x(\text{whatever}) = \text{whatever}$, så $x(4-t) = 4-t$.

$4$ kommer fra $a+b = 1+3 = 4$.
Bilde
Johan Nes
Fermat
Fermat
Innlegg: 705
Registrert: 23/01-2012 12:56

Takker og bukker, Aleks! :)
Svar